Wearable devices for patient monitoring in the intensive care unit.

IF 2.8 Q2 CRITICAL CARE MEDICINE Intensive Care Medicine Experimental Pub Date : 2025-02-27 DOI:10.1186/s40635-025-00738-8
Alessandra Angelucci, Massimiliano Greco, Maurizio Cecconi, Andrea Aliverti
{"title":"Wearable devices for patient monitoring in the intensive care unit.","authors":"Alessandra Angelucci, Massimiliano Greco, Maurizio Cecconi, Andrea Aliverti","doi":"10.1186/s40635-025-00738-8","DOIUrl":null,"url":null,"abstract":"<p><p>Wearable devices (WDs), originally launched for fitness, are now increasingly recognized as valuable technologies in several clinical applications, including the intensive care unit (ICU). These devices allow for continuous, non-invasive monitoring of physiological parameters such as heart rate, respiratory rate, blood pressure, glucose levels, and posture and movement. WDs offer significant advantages in making monitoring less invasive and could help bridge gaps between ICUs and standard hospital wards, ensuring more effective transitioning to lower-level monitoring after discharge from the ICU. WDs are also promising tools in applications like delirium detection, vital signs monitoring in limited resource settings, and prevention of hospital-acquired pressure injuries. Despite the potential of WDs, challenges such as measurement accuracy, explainability of data processing algorithms, and actual integration into the clinical decision-making process persist. Further research is necessary to validate the effectiveness of WDs and to integrate them into clinical practice in critical care environments.Take home messages Wearable devices are revolutionizing patient monitoring in ICUs and step down units by providing continuous, non-invasive, and cost-effective solutions. Validation of their accuracy and integration in the clinical decision-making process remain crucial for widespread clinical adoption.</p>","PeriodicalId":13750,"journal":{"name":"Intensive Care Medicine Experimental","volume":"13 1","pages":"26"},"PeriodicalIF":2.8000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11868008/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intensive Care Medicine Experimental","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s40635-025-00738-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CRITICAL CARE MEDICINE","Score":null,"Total":0}
引用次数: 0

Abstract

Wearable devices (WDs), originally launched for fitness, are now increasingly recognized as valuable technologies in several clinical applications, including the intensive care unit (ICU). These devices allow for continuous, non-invasive monitoring of physiological parameters such as heart rate, respiratory rate, blood pressure, glucose levels, and posture and movement. WDs offer significant advantages in making monitoring less invasive and could help bridge gaps between ICUs and standard hospital wards, ensuring more effective transitioning to lower-level monitoring after discharge from the ICU. WDs are also promising tools in applications like delirium detection, vital signs monitoring in limited resource settings, and prevention of hospital-acquired pressure injuries. Despite the potential of WDs, challenges such as measurement accuracy, explainability of data processing algorithms, and actual integration into the clinical decision-making process persist. Further research is necessary to validate the effectiveness of WDs and to integrate them into clinical practice in critical care environments.Take home messages Wearable devices are revolutionizing patient monitoring in ICUs and step down units by providing continuous, non-invasive, and cost-effective solutions. Validation of their accuracy and integration in the clinical decision-making process remain crucial for widespread clinical adoption.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Intensive Care Medicine Experimental
Intensive Care Medicine Experimental CRITICAL CARE MEDICINE-
CiteScore
5.10
自引率
2.90%
发文量
48
审稿时长
13 weeks
期刊最新文献
Expiratory ventilation assistance versus pressure-controlled ventilation with ambient oxygen in a hemorrhagic trauma model: a prehospital rescue option? Validation of the capnodynamic method to calculate mixed venous oxygen saturation in postoperative cardiac patients. Correction: Impact of hemoadsorption with CytoSorb® on meropenem and piperacillin exposure in critically ill patients in a post-CKRT setup: a single-center, retrospective data analysis. Machine learning-based identification of efficient and restrictive physiological subphenotypes in acute respiratory distress syndrome. Elucidating the causal relationship of mechanical power and lung injury: a dynamic approach to ventilator management.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1