Adipocyte Septin-7 attenuates obesogenic adipogenesis and promotes lipolysis to prevent obesity.

IF 7 2区 医学 Q1 ENDOCRINOLOGY & METABOLISM Molecular Metabolism Pub Date : 2025-02-25 DOI:10.1016/j.molmet.2025.102114
Liran Xu, Chao Yang, Kaidan Pang, Ying Zhang, Yu He, Siyu Liu, Huijing Tian, Zehua Shao, Siyu Wang, Xingqian Liu, Ting Li, Yapeng Cao, Luqin Yan, Jinjin Liu, Yanan Wang, Yongxin Li, Wei Zhao, Youhua Wang, Yang Yan, Shengpeng Wang
{"title":"Adipocyte Septin-7 attenuates obesogenic adipogenesis and promotes lipolysis to prevent obesity.","authors":"Liran Xu, Chao Yang, Kaidan Pang, Ying Zhang, Yu He, Siyu Liu, Huijing Tian, Zehua Shao, Siyu Wang, Xingqian Liu, Ting Li, Yapeng Cao, Luqin Yan, Jinjin Liu, Yanan Wang, Yongxin Li, Wei Zhao, Youhua Wang, Yang Yan, Shengpeng Wang","doi":"10.1016/j.molmet.2025.102114","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>The white adipose tissue (WAT) expansion plays a significant role in the development of obesity. Cytoskeletal remodeling directly impacts adipogenic program, however, the precise mechanism remains poorly understood. Here, we identified a crucial role of Septin-7 (SEPT7), a cytoskeleton component, in the regulation of diet-induced processes of adipogenesis, lipogenesis, and lipolysis in WAT.</p><p><strong>Methods: </strong>A high-fat diet (HFD)-induced obesity model was constructed using mice with inducible adipocyte-specific SEPT7 deficiency. The impact of SEPT7 on adipocyte morphology, cell number and metabolism capacity were evaluated with immunofluorescence, isoproterenol induced lipolysis assay, glucose tolerance test and insulin tolerance test. Adipocyte mTmG reporter line was established to trace in vivo adipogenesis. The preadipocyte 3T3-L1 cell was induced for exploring role of SEPT7 in adipocyte differentiation. qRT-PCR and Western-blot were used to investigate the expression of PPARγ, C/EBPα, and HSL in 3T3-L1 cell with siRNA-mediated SEPT7 knockdown.</p><p><strong>Results: </strong>SEPT7 expression was greatly induced in obesogenic human and murine adipocytes. Mice lacking SEPT7 in mature white adipocytes demonstrated defective differentiation of preadipocyte into mature adipocytes when fed HFD resulting in larger adipocytes, increased WAT inflammation and reduced lipolysis, which leading to increased WAT mass, liver fat accumulation and impaired glucose tolerance. Mechanistically, we identified SEPT7 restrains store-operated Ca<sup>2+</sup> entry (SOCE) and regulates adipocyte adipogenesis and lipolysis by targeting PPARγ, C/EBPα and HSL.</p><p><strong>Conclusions: </strong>We demonstrated that SEPT7 negatively regulates adipogenesis while promotes lipolysis and its repression drives WAT expansion and impaired metabolic health.</p>","PeriodicalId":18765,"journal":{"name":"Molecular Metabolism","volume":" ","pages":"102114"},"PeriodicalIF":7.0000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Metabolism","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.molmet.2025.102114","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

Abstract

Objectives: The white adipose tissue (WAT) expansion plays a significant role in the development of obesity. Cytoskeletal remodeling directly impacts adipogenic program, however, the precise mechanism remains poorly understood. Here, we identified a crucial role of Septin-7 (SEPT7), a cytoskeleton component, in the regulation of diet-induced processes of adipogenesis, lipogenesis, and lipolysis in WAT.

Methods: A high-fat diet (HFD)-induced obesity model was constructed using mice with inducible adipocyte-specific SEPT7 deficiency. The impact of SEPT7 on adipocyte morphology, cell number and metabolism capacity were evaluated with immunofluorescence, isoproterenol induced lipolysis assay, glucose tolerance test and insulin tolerance test. Adipocyte mTmG reporter line was established to trace in vivo adipogenesis. The preadipocyte 3T3-L1 cell was induced for exploring role of SEPT7 in adipocyte differentiation. qRT-PCR and Western-blot were used to investigate the expression of PPARγ, C/EBPα, and HSL in 3T3-L1 cell with siRNA-mediated SEPT7 knockdown.

Results: SEPT7 expression was greatly induced in obesogenic human and murine adipocytes. Mice lacking SEPT7 in mature white adipocytes demonstrated defective differentiation of preadipocyte into mature adipocytes when fed HFD resulting in larger adipocytes, increased WAT inflammation and reduced lipolysis, which leading to increased WAT mass, liver fat accumulation and impaired glucose tolerance. Mechanistically, we identified SEPT7 restrains store-operated Ca2+ entry (SOCE) and regulates adipocyte adipogenesis and lipolysis by targeting PPARγ, C/EBPα and HSL.

Conclusions: We demonstrated that SEPT7 negatively regulates adipogenesis while promotes lipolysis and its repression drives WAT expansion and impaired metabolic health.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular Metabolism
Molecular Metabolism ENDOCRINOLOGY & METABOLISM-
CiteScore
14.50
自引率
2.50%
发文量
219
审稿时长
43 days
期刊介绍: Molecular Metabolism is a leading journal dedicated to sharing groundbreaking discoveries in the field of energy homeostasis and the underlying factors of metabolic disorders. These disorders include obesity, diabetes, cardiovascular disease, and cancer. Our journal focuses on publishing research driven by hypotheses and conducted to the highest standards, aiming to provide a mechanistic understanding of energy homeostasis-related behavior, physiology, and dysfunction. We promote interdisciplinary science, covering a broad range of approaches from molecules to humans throughout the lifespan. Our goal is to contribute to transformative research in metabolism, which has the potential to revolutionize the field. By enabling progress in the prognosis, prevention, and ultimately the cure of metabolic disorders and their long-term complications, our journal seeks to better the future of health and well-being.
期刊最新文献
Apolipoprotein A-IV is induced by high-fat diets and mediates positive effects on glucose and lipid metabolism. Glucose-dependent insulinotropic polypeptide (GIP). The small GTPase Rap1 in POMC neurons regulates leptin actions and glucose metabolism. Adipocyte Septin-7 attenuates obesogenic adipogenesis and promotes lipolysis to prevent obesity. Enhanced metabolic adaptations following late dark phase wheel running in high-fat diet-fed mice.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1