Cell-type-specific manifold analysis discloses independent geometric transformations in the hippocampal spatial code.

IF 14.7 1区 医学 Q1 NEUROSCIENCES Neuron Pub Date : 2025-02-19 DOI:10.1016/j.neuron.2025.01.022
Julio Esparza, Juan Pablo Quintanilla, Elena Cid, Ana C Medeiros, Juan A Gallego, Liset Menendez de la Prida
{"title":"Cell-type-specific manifold analysis discloses independent geometric transformations in the hippocampal spatial code.","authors":"Julio Esparza, Juan Pablo Quintanilla, Elena Cid, Ana C Medeiros, Juan A Gallego, Liset Menendez de la Prida","doi":"10.1016/j.neuron.2025.01.022","DOIUrl":null,"url":null,"abstract":"<p><p>Integrating analyses of genetically defined cell types with population-level approaches remains poorly explored. We investigated this question by focusing on hippocampal spatial maps and the contribution of two genetically defined pyramidal cell types in the deep and superficial CA1 sublayers. Using single- and dual-color miniscope imaging in mice running along a linear track, we found that population activity from these cells exhibited three-dimensional ring manifolds that encoded the animal position and running direction. Despite shared topology, sublayer-specific manifolds displayed distinct geometric features. Manipulating track orientation revealed rotational and translational changes in manifolds from deep cells, contrasting with more stable representations by superficial cells. These transformations were not observed in manifolds derived from the entire CA1 population. Instead, cell-type-specific chemogenetic silencing of either sublayer revealed independent geometric codes. Our results show how genetically specified subpopulations may underpin parallel spatial maps that can be manipulated independently.</p>","PeriodicalId":19313,"journal":{"name":"Neuron","volume":" ","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuron","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.neuron.2025.01.022","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Integrating analyses of genetically defined cell types with population-level approaches remains poorly explored. We investigated this question by focusing on hippocampal spatial maps and the contribution of two genetically defined pyramidal cell types in the deep and superficial CA1 sublayers. Using single- and dual-color miniscope imaging in mice running along a linear track, we found that population activity from these cells exhibited three-dimensional ring manifolds that encoded the animal position and running direction. Despite shared topology, sublayer-specific manifolds displayed distinct geometric features. Manipulating track orientation revealed rotational and translational changes in manifolds from deep cells, contrasting with more stable representations by superficial cells. These transformations were not observed in manifolds derived from the entire CA1 population. Instead, cell-type-specific chemogenetic silencing of either sublayer revealed independent geometric codes. Our results show how genetically specified subpopulations may underpin parallel spatial maps that can be manipulated independently.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Neuron
Neuron 医学-神经科学
CiteScore
24.50
自引率
3.10%
发文量
382
审稿时长
1 months
期刊介绍: Established as a highly influential journal in neuroscience, Neuron is widely relied upon in the field. The editors adopt interdisciplinary strategies, integrating biophysical, cellular, developmental, and molecular approaches alongside a systems approach to sensory, motor, and higher-order cognitive functions. Serving as a premier intellectual forum, Neuron holds a prominent position in the entire neuroscience community.
期刊最新文献
Closed-loop modulation of remote hippocampal representations with neurofeedback. Glioma-induced alterations in excitatory neurons are reversed by mTOR inhibition. Parental origin of transgene modulates amyloid-β plaque burden in the 5xFAD mouse model of Alzheimer's disease. Amygdalo-cortical dialogue underlies memory enhancement by emotional association. Projection-targeted photopharmacology reveals distinct anxiolytic roles for presynaptic mGluR2 in prefrontal- and insula-amygdala synapses.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1