Saccharomyces cerevisiae-derived vesicles loaded with dextromethorphan as a candidate for the management of neuroinflammation related to Alzheimer's disease.
{"title":"<i>Saccharomyces cerevisiae</i>-derived vesicles loaded with dextromethorphan as a candidate for the management of neuroinflammation related to Alzheimer's disease.","authors":"Parastoo Valizadeh, Negin Mozafari, Hajar Ashrafi, Reza Heidari, Negar Azarpira, Amir Azadi","doi":"10.1080/10837450.2025.2470351","DOIUrl":null,"url":null,"abstract":"<p><p>Alzheimer's disease (AD) is a neurodegenerative disease that is associated with neuroinflammation. Dextromethorphan (DXM) exerts neuroprotective effects in many central nervous system injuries and neurodegenerative diseases. The cell wall of <i>Saccharomyces cerevisiae</i> is a cell-based drug delivery system that can be a suitable candidate for targeted drug delivery to the site of inflammation. In this study, nanoparticles (NPs) were prepared from <i>Saccharomyces cerevisiae</i> cell walls, coated with polysorbate-80, and loaded with DXM. NPs had favorable hemolytic behavior with a particle size distribution of 187.25 ± 73.37 nm and a zeta potential of +4.3 mV. Pathological examination in a mouse model of neuroinflammation showed that NPs had the ability to reduce brain inflammation and the adverse effects of DXM.</p>","PeriodicalId":20004,"journal":{"name":"Pharmaceutical Development and Technology","volume":" ","pages":"1-9"},"PeriodicalIF":2.6000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutical Development and Technology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/10837450.2025.2470351","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease that is associated with neuroinflammation. Dextromethorphan (DXM) exerts neuroprotective effects in many central nervous system injuries and neurodegenerative diseases. The cell wall of Saccharomyces cerevisiae is a cell-based drug delivery system that can be a suitable candidate for targeted drug delivery to the site of inflammation. In this study, nanoparticles (NPs) were prepared from Saccharomyces cerevisiae cell walls, coated with polysorbate-80, and loaded with DXM. NPs had favorable hemolytic behavior with a particle size distribution of 187.25 ± 73.37 nm and a zeta potential of +4.3 mV. Pathological examination in a mouse model of neuroinflammation showed that NPs had the ability to reduce brain inflammation and the adverse effects of DXM.
期刊介绍:
Pharmaceutical Development & Technology publishes research on the design, development, manufacture, and evaluation of conventional and novel drug delivery systems, emphasizing practical solutions and applications to theoretical and research-based problems. The journal aims to publish significant, innovative and original research to advance the frontiers of pharmaceutical development and technology.
Through original articles, reviews (where prior discussion with the EIC is encouraged), short reports, book reviews and technical notes, Pharmaceutical Development & Technology covers aspects such as:
-Preformulation and pharmaceutical formulation studies
-Pharmaceutical materials selection and characterization
-Pharmaceutical process development, engineering, scale-up and industrialisation, and process validation
-QbD in the form a risk assessment and DoE driven approaches
-Design of dosage forms and drug delivery systems
-Emerging pharmaceutical formulation and drug delivery technologies with a focus on personalised therapies
-Drug delivery systems research and quality improvement
-Pharmaceutical regulatory affairs
This journal will not consider for publication manuscripts focusing purely on clinical evaluations, botanicals, or animal models.