Jinsol Jeong, Dong-Kyung Lee, Kwang-Hwan Choi, Dong-Wook Kim, Seokjong Lee, Jong-Nam Oh, Yelim Ahn, Chang-Kyu Lee
{"title":"Defining core signaling pathways for supporting in vitro maintenance of pig extraembryonic endoderm (XEN) cells.","authors":"Jinsol Jeong, Dong-Kyung Lee, Kwang-Hwan Choi, Dong-Wook Kim, Seokjong Lee, Jong-Nam Oh, Yelim Ahn, Chang-Kyu Lee","doi":"10.1530/REP-24-0393","DOIUrl":null,"url":null,"abstract":"<p><p>Extraembryonic endoderm (XEN) cells can be derived from blastocyst primitive endoderm (PrE), becoming a useful tool for studying mammalian development, including early lineage segregation and embryo patterning. Establishment of stem cells representing the respective lineages in blastocysts has been robustly attempted in domestic animals, especially pigs, to reconstitute embryogenesis in vitro for comparative studies. Therefore, we developed a serum-free culture system for pig XEN cells by dissecting the signals governing the core gene network of the PrE lineage. The FGF, LIF and WNT signaling pathways and B27 supplements are essential for maintaining a rapid proliferation rate in pig XEN cells. These cells recapitulated the molecular features and differentiation capacity of the PrE lineage. Especially, the XEN cells incorporated into normal development, retaining cellular identity and contributing to the PrE lineage when injected into in vitro-produced porcine blastocysts. In addition, species-specific characteristics of pigs were observed, including the involvement of lipid metabolism and NANOG/GATA co-expression in XEN cells. Taken together, our findings can contribute to the expansion of the understanding of developmental biology and its biomedical applications by enabling reproducible and homogeneous porcine XEN cell culture.</p>","PeriodicalId":21127,"journal":{"name":"Reproduction","volume":" ","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11906125/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reproduction","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1530/REP-24-0393","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/1 0:00:00","PubModel":"Print","JCR":"Q1","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Extraembryonic endoderm (XEN) cells can be derived from blastocyst primitive endoderm (PrE), becoming a useful tool for studying mammalian development, including early lineage segregation and embryo patterning. Establishment of stem cells representing the respective lineages in blastocysts has been robustly attempted in domestic animals, especially pigs, to reconstitute embryogenesis in vitro for comparative studies. Therefore, we developed a serum-free culture system for pig XEN cells by dissecting the signals governing the core gene network of the PrE lineage. The FGF, LIF and WNT signaling pathways and B27 supplements are essential for maintaining a rapid proliferation rate in pig XEN cells. These cells recapitulated the molecular features and differentiation capacity of the PrE lineage. Especially, the XEN cells incorporated into normal development, retaining cellular identity and contributing to the PrE lineage when injected into in vitro-produced porcine blastocysts. In addition, species-specific characteristics of pigs were observed, including the involvement of lipid metabolism and NANOG/GATA co-expression in XEN cells. Taken together, our findings can contribute to the expansion of the understanding of developmental biology and its biomedical applications by enabling reproducible and homogeneous porcine XEN cell culture.
期刊介绍:
Reproduction is the official journal of the Society of Reproduction and Fertility (SRF). It was formed in 2001 when the Society merged its two journals, the Journal of Reproduction and Fertility and Reviews of Reproduction.
Reproduction publishes original research articles and topical reviews on the subject of reproductive and developmental biology, and reproductive medicine. The journal will consider publication of high-quality meta-analyses; these should be submitted to the research papers category. The journal considers studies in humans and all animal species, and will publish clinical studies if they advance our understanding of the underlying causes and/or mechanisms of disease.
Scientific excellence and broad interest to our readership are the most important criteria during the peer review process. The journal publishes articles that make a clear advance in the field, whether of mechanistic, descriptive or technical focus. Articles that substantiate new or controversial reports are welcomed if they are noteworthy and advance the field. Topics include, but are not limited to, reproductive immunology, reproductive toxicology, stem cells, environmental effects on reproductive potential and health (eg obesity), extracellular vesicles, fertility preservation and epigenetic effects on reproductive and developmental processes.