Yumin Li, Tzung-May Fu, Jian Zhen Yu, Aoxing Zhang, Xu Yu, Jianhuai Ye, Lei Zhu, Huizhong Shen, Chen Wang, Xin Yang, Shu Tao, Qi Chen, Ying Li, Lei Li, Huizheng Che, Colette L Heald
{"title":"Nitrogen dominates global atmospheric organic aerosol absorption.","authors":"Yumin Li, Tzung-May Fu, Jian Zhen Yu, Aoxing Zhang, Xu Yu, Jianhuai Ye, Lei Zhu, Huizhong Shen, Chen Wang, Xin Yang, Shu Tao, Qi Chen, Ying Li, Lei Li, Huizheng Che, Colette L Heald","doi":"10.1126/science.adr4473","DOIUrl":null,"url":null,"abstract":"<p><p>Atmospheric organic aerosols (OAs) influence Earth's climate by absorbing sunlight. However, the link between their evolving composition and their absorptive effects is unclear. We demonstrate that brown nitrogen (BrN), the absorptive nitrogenous component of OAs, dominates their global absorption. Using a global model, we quantified BrN abundance, tracked its optical evolution with chemical aging, and assessed its radiative absorption. BrN contributes 76% of OAs' surface light absorption over the US and 61% of their global absorptive optical depth. Moreover, the observed variability of OAs' absorptive capacity is primarily driven by the sources and aging of BrN. BrN represents 18% of the global absorptive direct radiative effect of carbonaceous aerosols, with biomass burning being the largest contributor. Our research establishes a nitrogen-centric framework for attributing the climate impacts of OAs.</p>","PeriodicalId":21678,"journal":{"name":"Science","volume":"387 6737","pages":"989-995"},"PeriodicalIF":44.7000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1126/science.adr4473","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/27 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Atmospheric organic aerosols (OAs) influence Earth's climate by absorbing sunlight. However, the link between their evolving composition and their absorptive effects is unclear. We demonstrate that brown nitrogen (BrN), the absorptive nitrogenous component of OAs, dominates their global absorption. Using a global model, we quantified BrN abundance, tracked its optical evolution with chemical aging, and assessed its radiative absorption. BrN contributes 76% of OAs' surface light absorption over the US and 61% of their global absorptive optical depth. Moreover, the observed variability of OAs' absorptive capacity is primarily driven by the sources and aging of BrN. BrN represents 18% of the global absorptive direct radiative effect of carbonaceous aerosols, with biomass burning being the largest contributor. Our research establishes a nitrogen-centric framework for attributing the climate impacts of OAs.
期刊介绍:
Science is a leading outlet for scientific news, commentary, and cutting-edge research. Through its print and online incarnations, Science reaches an estimated worldwide readership of more than one million. Science’s authorship is global too, and its articles consistently rank among the world's most cited research.
Science serves as a forum for discussion of important issues related to the advancement of science by publishing material on which a consensus has been reached as well as including the presentation of minority or conflicting points of view. Accordingly, all articles published in Science—including editorials, news and comment, and book reviews—are signed and reflect the individual views of the authors and not official points of view adopted by AAAS or the institutions with which the authors are affiliated.
Science seeks to publish those papers that are most influential in their fields or across fields and that will significantly advance scientific understanding. Selected papers should present novel and broadly important data, syntheses, or concepts. They should merit recognition by the wider scientific community and general public provided by publication in Science, beyond that provided by specialty journals. Science welcomes submissions from all fields of science and from any source. The editors are committed to the prompt evaluation and publication of submitted papers while upholding high standards that support reproducibility of published research. Science is published weekly; selected papers are published online ahead of print.