Site- and electroencephalogram-frequency-specific effects of 800-nm prefrontal transcranial photobiomodulation on electroencephalogram global network topology in young adults.

IF 4.8 2区 医学 Q1 NEUROSCIENCES Neurophotonics Pub Date : 2025-01-01 Epub Date: 2025-02-27 DOI:10.1117/1.NPh.12.1.015011
Shu Kang, Lin Li, Sadra Shahdadian, Anqi Wu, Hanli Liu
{"title":"Site- and electroencephalogram-frequency-specific effects of 800-nm prefrontal transcranial photobiomodulation on electroencephalogram global network topology in young adults.","authors":"Shu Kang, Lin Li, Sadra Shahdadian, Anqi Wu, Hanli Liu","doi":"10.1117/1.NPh.12.1.015011","DOIUrl":null,"url":null,"abstract":"<p><strong>Significance: </strong>Transcranial photobiomodulation (tPBM) is an optical intervention that effectively enhances human cognition. However, limited studies have reported the effects of tPBM on electrophysiological brain networks.</p><p><strong>Aim: </strong>We aimed to investigate the site- and electroencephalogram (EEG)-frequency-specific effects of 800-nm prefrontal tPBM on the EEG global network topology of the human brain, so a better understanding of how tPBM alters EEG brain networks can be achieved.</p><p><strong>Approach: </strong>A total of 26 healthy young adults participated in the study, with multiple visits when either active or sham tPBM interventions were delivered to either the left or right forehead. A 19-channel EEG cap recorded the time series before and after the 8-min tPBM/sham. We used graph theory analysis (GTA) and formulated adjacency matrices in five frequency bands, followed by quantification of normalized changes in GTA-based global topographical metrics induced by the respective left and right tPBM/sham interventions.</p><p><strong>Results: </strong>Statistical analysis indicated that the effects of 800-nm prefrontal tPBM on the EEG global topological networks are both site- and EEG-frequency-dependent. Specifically, our results demonstrated that the left 800-nm tPBM primarily enhanced the alpha network efficiency and information transmission, whereas the right 800-nm tPBM augmented the clustering ability of the EEG topological networks and improved the formation of small-worldness of the beta waves across the entire brain.</p><p><strong>Conclusions: </strong>The study concluded that 800-nm prefrontal tPBM can enhance global connectivity patterns and information transmission in the human brain, with effects that are site- and EEG-frequency-specific. To further confirm and better understand these findings, future research should correlate post-tPBM cognitive assessments with EEG network analysis.</p>","PeriodicalId":54335,"journal":{"name":"Neurophotonics","volume":"12 1","pages":"015011"},"PeriodicalIF":4.8000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11866628/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurophotonics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1117/1.NPh.12.1.015011","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/27 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Significance: Transcranial photobiomodulation (tPBM) is an optical intervention that effectively enhances human cognition. However, limited studies have reported the effects of tPBM on electrophysiological brain networks.

Aim: We aimed to investigate the site- and electroencephalogram (EEG)-frequency-specific effects of 800-nm prefrontal tPBM on the EEG global network topology of the human brain, so a better understanding of how tPBM alters EEG brain networks can be achieved.

Approach: A total of 26 healthy young adults participated in the study, with multiple visits when either active or sham tPBM interventions were delivered to either the left or right forehead. A 19-channel EEG cap recorded the time series before and after the 8-min tPBM/sham. We used graph theory analysis (GTA) and formulated adjacency matrices in five frequency bands, followed by quantification of normalized changes in GTA-based global topographical metrics induced by the respective left and right tPBM/sham interventions.

Results: Statistical analysis indicated that the effects of 800-nm prefrontal tPBM on the EEG global topological networks are both site- and EEG-frequency-dependent. Specifically, our results demonstrated that the left 800-nm tPBM primarily enhanced the alpha network efficiency and information transmission, whereas the right 800-nm tPBM augmented the clustering ability of the EEG topological networks and improved the formation of small-worldness of the beta waves across the entire brain.

Conclusions: The study concluded that 800-nm prefrontal tPBM can enhance global connectivity patterns and information transmission in the human brain, with effects that are site- and EEG-frequency-specific. To further confirm and better understand these findings, future research should correlate post-tPBM cognitive assessments with EEG network analysis.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
800纳米前额叶经颅光生物调制对青壮年脑电图全局网络拓扑的部位和频率特异性影响
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Neurophotonics
Neurophotonics Neuroscience-Neuroscience (miscellaneous)
CiteScore
7.20
自引率
11.30%
发文量
114
审稿时长
21 weeks
期刊介绍: At the interface of optics and neuroscience, Neurophotonics is a peer-reviewed journal that covers advances in optical technology applicable to study of the brain and their impact on the basic and clinical neuroscience applications.
期刊最新文献
Viscocohesive hyaluronan gel enhances stability of intravital multiphoton imaging with subcellular resolution. Zika virus encephalitis causes transient reduction of functional cortical connectivity. Early changes in spatiotemporal dynamics of remapped circuits and global networks predict functional recovery after stroke in mice. Distribution of spine classes shows intra-neuronal dendritic heterogeneity in mouse cortex. Expansion microscopy reveals neural circuit organization in genetic animal models.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1