Urinary metabolite model to predict the dying process in lung cancer patients.

IF 5.4 Q1 MEDICINE, RESEARCH & EXPERIMENTAL Communications medicine Pub Date : 2025-02-27 DOI:10.1038/s43856-025-00764-3
Séamus Coyle, Elinor Chapman, David M Hughes, James Baker, Rachael Slater, Andrew S Davison, Brendan P Norman, Ivayla Roberts, Amara C Nwosu, James A Gallagher, Lakshminarayan R Ranganath, Mark T Boyd, Catriona R Mayland, Douglas B Kell, Stephen Mason, John Ellershaw, Chris Probert
{"title":"Urinary metabolite model to predict the dying process in lung cancer patients.","authors":"Séamus Coyle, Elinor Chapman, David M Hughes, James Baker, Rachael Slater, Andrew S Davison, Brendan P Norman, Ivayla Roberts, Amara C Nwosu, James A Gallagher, Lakshminarayan R Ranganath, Mark T Boyd, Catriona R Mayland, Douglas B Kell, Stephen Mason, John Ellershaw, Chris Probert","doi":"10.1038/s43856-025-00764-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Accurately recognizing that a person may be dying is central to improving their experience of care at the end-of-life. However, predicting dying is frequently inaccurate and often occurs only hours or a few days before death.</p><p><strong>Methods: </strong>We performed urinary metabolomics analysis on patients with lung cancer to create a metabolite model to predict dying over the last 30 days of life.</p><p><strong>Results: </strong>Here we show a model, using only 7 metabolites, has excellent accuracy in the Training cohort n = 112 (AUC = 0·85, 0·85, 0·88 and 0·86 on days 5, 10, 20 and 30) and Validation cohort n = 49 (AUC = 0·86, 0·83, 0·90, 0·86 on days 5, 10, 20 and 30). These results are more accurate than existing validated prognostic tools, and uniquely give accurate predictions over a range of time points in the last 30 days of life. Additionally, we present changes in 125 metabolites during the final four weeks of life, with the majority exhibiting statistically significant changes within the last week before death.</p><p><strong>Conclusions: </strong>These metabolites identified offer insights into previously undocumented pathways involved in or affected by the dying process. They not only imply cancer's influence on the body but also illustrate the dying process. Given the similar dying trajectory observed in individuals with cancer, our findings likely apply to other cancer types. Prognostic tests, based on the metabolites we identified, could aid clinicians in the early recognition of people who may be dying and thereby influence clinical practice and improve the care of dying patients.</p>","PeriodicalId":72646,"journal":{"name":"Communications medicine","volume":"5 1","pages":"49"},"PeriodicalIF":5.4000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11868640/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s43856-025-00764-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Accurately recognizing that a person may be dying is central to improving their experience of care at the end-of-life. However, predicting dying is frequently inaccurate and often occurs only hours or a few days before death.

Methods: We performed urinary metabolomics analysis on patients with lung cancer to create a metabolite model to predict dying over the last 30 days of life.

Results: Here we show a model, using only 7 metabolites, has excellent accuracy in the Training cohort n = 112 (AUC = 0·85, 0·85, 0·88 and 0·86 on days 5, 10, 20 and 30) and Validation cohort n = 49 (AUC = 0·86, 0·83, 0·90, 0·86 on days 5, 10, 20 and 30). These results are more accurate than existing validated prognostic tools, and uniquely give accurate predictions over a range of time points in the last 30 days of life. Additionally, we present changes in 125 metabolites during the final four weeks of life, with the majority exhibiting statistically significant changes within the last week before death.

Conclusions: These metabolites identified offer insights into previously undocumented pathways involved in or affected by the dying process. They not only imply cancer's influence on the body but also illustrate the dying process. Given the similar dying trajectory observed in individuals with cancer, our findings likely apply to other cancer types. Prognostic tests, based on the metabolites we identified, could aid clinicians in the early recognition of people who may be dying and thereby influence clinical practice and improve the care of dying patients.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
预测肺癌患者死亡过程的尿液代谢物模型。
背景:准确地认识到一个人可能正在死亡是改善他们在生命结束时的护理体验的核心。然而,预测死亡往往是不准确的,往往发生在死亡前几小时或几天。方法:我们对肺癌患者进行尿液代谢组学分析,建立代谢物模型来预测生命最后30天的死亡。结果:在这里,我们展示了仅使用7种代谢物的模型,在训练队列n = 112(第5、10、20和30天的AUC = 0.85、0.85、0.88和0.86)和验证队列n = 49(第5、10、20和30天的AUC = 0.86、0.83、0.90和0.86)中具有极好的准确性。这些结果比现有的经过验证的预后工具更准确,并且在生命最后30天的时间点范围内提供独特的准确预测。此外,我们发现125种代谢物在生命的最后四周发生了变化,其中大多数在死亡前的最后一周发生了统计学上显著的变化。结论:这些鉴定的代谢物提供了以前未记载的参与或受死亡过程影响的途径的见解。它们不仅暗示了癌症对身体的影响,还说明了死亡的过程。鉴于在癌症患者中观察到的类似死亡轨迹,我们的发现可能适用于其他类型的癌症。基于我们确定的代谢物的预后测试可以帮助临床医生早期识别可能即将死亡的人,从而影响临床实践并改善对垂死病人的护理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Molecular insights in HIV-associated cardiac dysfunction. Author Correction: A reproducible extended ex-vivo normothermic machine liver perfusion protocol utilising improved nutrition and targeted vascular flows. Sex-specific transcriptome similarity networks elucidate comorbidity relationships. Author Correction: Impact of commonly administered drugs on the progression of spinal cord injury: a systematic review. Maternal mid-pregnancy dietary patterns and inflammatory bowel disease in offspring from a prospective cohort study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1