{"title":"HypMix: Hyperbolic Representation Learning for Graphs with Mixed Hierarchical and Non-hierarchical Structures.","authors":"Eric W Lee, Bo Xiong, Carl Yang, Joyce C Ho","doi":"10.1145/3627673.3679940","DOIUrl":null,"url":null,"abstract":"<p><p>Heterogeneous networks contain multiple types of nodes and links, with some link types encapsulating hierarchical structure over entities. Hierarchical relationships can codify information such as subcategories or one entity being subsumed by another and are often used for organizing conceptual knowledge into a tree-structured graph. Hyperbolic embedding models learn node representations in a hyperbolic space suitable for preserving the hierarchical structure. Unfortunately, current hyperbolic embedding models only implicitly capture the hierarchical structure, failing to distinguish between node types, and they only assume a single tree. In practice, many networks contain a mixture of hierarchical and non-hierarchical structures, and the hierarchical relations may be represented as multiple trees with complex structures, such as sharing certain entities. In this work, we propose a new hyperbolic representation learning model that can handle complex hierarchical structures and also learn the representation of both hierarchical and non-hierarchic structures. We evaluate our model on several datasets, including identifying relevant articles for a systematic review, which is an essential tool for evidence-driven medicine and node classification.</p>","PeriodicalId":74507,"journal":{"name":"Proceedings of the ... ACM International Conference on Information & Knowledge Management. ACM International Conference on Information and Knowledge Management","volume":"2024 ","pages":"3852-3856"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11867734/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... ACM International Conference on Information & Knowledge Management. ACM International Conference on Information and Knowledge Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3627673.3679940","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/21 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Heterogeneous networks contain multiple types of nodes and links, with some link types encapsulating hierarchical structure over entities. Hierarchical relationships can codify information such as subcategories or one entity being subsumed by another and are often used for organizing conceptual knowledge into a tree-structured graph. Hyperbolic embedding models learn node representations in a hyperbolic space suitable for preserving the hierarchical structure. Unfortunately, current hyperbolic embedding models only implicitly capture the hierarchical structure, failing to distinguish between node types, and they only assume a single tree. In practice, many networks contain a mixture of hierarchical and non-hierarchical structures, and the hierarchical relations may be represented as multiple trees with complex structures, such as sharing certain entities. In this work, we propose a new hyperbolic representation learning model that can handle complex hierarchical structures and also learn the representation of both hierarchical and non-hierarchic structures. We evaluate our model on several datasets, including identifying relevant articles for a systematic review, which is an essential tool for evidence-driven medicine and node classification.