Unveiling the Role of Alkyl Chain in Boosting Antibacterial Selectivity and Cell Biocompatibility.

IF 8.5 Q1 CHEMISTRY, MULTIDISCIPLINARY JACS Au Pub Date : 2025-01-22 eCollection Date: 2025-02-24 DOI:10.1021/jacsau.4c00915
Ziwei Deng, Rongyuan Zhang, Junyi Gong, Zicong Zhang, Lingyan Zhang, Zijie Qiu, Parvej Alam, Jianquan Zhang, Yong Liu, Ying Li, Zheng Zhao, Ben Zhong Tang
{"title":"Unveiling the Role of Alkyl Chain in Boosting Antibacterial Selectivity and Cell Biocompatibility.","authors":"Ziwei Deng, Rongyuan Zhang, Junyi Gong, Zicong Zhang, Lingyan Zhang, Zijie Qiu, Parvej Alam, Jianquan Zhang, Yong Liu, Ying Li, Zheng Zhao, Ben Zhong Tang","doi":"10.1021/jacsau.4c00915","DOIUrl":null,"url":null,"abstract":"<p><p>Cationic amphiphiles have been demonstrated to be superior targeted antibacterial agents whose antibacterial activity exhibits a close relationship with their alkyl chain substituents. However, a systematic and deep investigation of the structure-property relationship is still pending. Meanwhile, cationic amphiphiles have a risk of accumulating in living mammalian cells, which poses a great threat to biosafety and clinical applications. In this study, a series of cationic amphiphilic aggregation-induced emission luminogens (AIEgens) with different alkyl chains (TPD-4, TPD-6, and TPD-12) have been developed with selective and variable antibacterial activity against Gram-positive bacteria depending on the alkyl chain length. Among them, TPD-6 with the intermediate alkyl chain length exhibited superior Gram-positive antibacterial performance. In addition, these cationic amphiphilic AIEgens had negligible invasiveness to mammalian cells. Molecular dynamics simulations revealed that the binding and deforming capabilities of the cationic amphiphilic AIEgens to the phospholipid bilayer of bacteria are responsible for their antibacterial activity. In vivo experiments indicated that TPD-6 also exhibited significant antibacterial and wound-healing abilities against Gram-positive bacteria.</p>","PeriodicalId":94060,"journal":{"name":"JACS Au","volume":"5 2","pages":"675-683"},"PeriodicalIF":8.5000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11862927/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JACS Au","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/jacsau.4c00915","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/24 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Cationic amphiphiles have been demonstrated to be superior targeted antibacterial agents whose antibacterial activity exhibits a close relationship with their alkyl chain substituents. However, a systematic and deep investigation of the structure-property relationship is still pending. Meanwhile, cationic amphiphiles have a risk of accumulating in living mammalian cells, which poses a great threat to biosafety and clinical applications. In this study, a series of cationic amphiphilic aggregation-induced emission luminogens (AIEgens) with different alkyl chains (TPD-4, TPD-6, and TPD-12) have been developed with selective and variable antibacterial activity against Gram-positive bacteria depending on the alkyl chain length. Among them, TPD-6 with the intermediate alkyl chain length exhibited superior Gram-positive antibacterial performance. In addition, these cationic amphiphilic AIEgens had negligible invasiveness to mammalian cells. Molecular dynamics simulations revealed that the binding and deforming capabilities of the cationic amphiphilic AIEgens to the phospholipid bilayer of bacteria are responsible for their antibacterial activity. In vivo experiments indicated that TPD-6 also exhibited significant antibacterial and wound-healing abilities against Gram-positive bacteria.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.10
自引率
0.00%
发文量
0
审稿时长
10 weeks
期刊最新文献
Issue Editorial Masthead Issue Publication Information Celebrating 5 Years of the ACS Au Journal Family Celebrating 5 Years of the ACS Au Journal Family. Engineering Dehalogenase Enzymes Using Variational Autoencoder-Generated Latent Spaces and Microfluidics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1