{"title":"Emerging Trends in DNA Nanotechnology-Enabled Cell Surface Engineering.","authors":"Fan Xiao, Xinghong Shen, Wenqi Tang, Dayong Yang","doi":"10.1021/jacsau.4c01274","DOIUrl":null,"url":null,"abstract":"<p><p>Cell surface engineering is a rapidly advancing field, pivotal for understanding cellular physiology and driving innovations in biomedical applications. In this regard, DNA nanotechnology offers unprecedented potential for precisely manipulating and functionalizing cell surfaces by virtue of its inherent programmability and versatile functionalities. Herein, this Perspective provides a comprehensive overview of emerging trends in DNA nanotechnology for cell surface engineering, focusing on key DNA nanostructure-based tools, their roles in regulating cellular physiological processes, and their biomedical applications. We first discuss the strategies for integrating DNA molecules onto cell surfaces, including the attachment of oligonucleotides and the higher-order DNA nanostructure. Second, we summarize the impact of DNA-based surface engineering on various cellular processes, such as membrane protein degradation, signaling transduction, intercellular communication, and the construction of artificial cell membrane components. Third, we highlight the biomedical applications of DNA-engineered cell surfaces, including targeted therapies for cancer and inflammation, as well as applications in cell capture/protection and diagnostic detection. Finally, we address the challenges and future directions in DNA nanotechnology-based cell surface engineering. This Perspective aims to provide valuable insights for the rational design of DNA nanotechnology in cell surface engineering, contributing to the development of precise and personalized medicine.</p>","PeriodicalId":94060,"journal":{"name":"JACS Au","volume":"5 2","pages":"550-570"},"PeriodicalIF":8.5000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11863167/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JACS Au","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/jacsau.4c01274","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/24 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Cell surface engineering is a rapidly advancing field, pivotal for understanding cellular physiology and driving innovations in biomedical applications. In this regard, DNA nanotechnology offers unprecedented potential for precisely manipulating and functionalizing cell surfaces by virtue of its inherent programmability and versatile functionalities. Herein, this Perspective provides a comprehensive overview of emerging trends in DNA nanotechnology for cell surface engineering, focusing on key DNA nanostructure-based tools, their roles in regulating cellular physiological processes, and their biomedical applications. We first discuss the strategies for integrating DNA molecules onto cell surfaces, including the attachment of oligonucleotides and the higher-order DNA nanostructure. Second, we summarize the impact of DNA-based surface engineering on various cellular processes, such as membrane protein degradation, signaling transduction, intercellular communication, and the construction of artificial cell membrane components. Third, we highlight the biomedical applications of DNA-engineered cell surfaces, including targeted therapies for cancer and inflammation, as well as applications in cell capture/protection and diagnostic detection. Finally, we address the challenges and future directions in DNA nanotechnology-based cell surface engineering. This Perspective aims to provide valuable insights for the rational design of DNA nanotechnology in cell surface engineering, contributing to the development of precise and personalized medicine.