Oxygen radical coupling on short-range ordered V sites for enhanced oxygen evolution reaction activity

IF 6.3 2区 材料科学 Q2 CHEMISTRY, PHYSICAL Applied Surface Science Pub Date : 2025-02-28 DOI:10.1016/j.apsusc.2025.162829
Xiaoxiao Li, Yu Yan, Yuan Yao, Yang Liu
{"title":"Oxygen radical coupling on short-range ordered V sites for enhanced oxygen evolution reaction activity","authors":"Xiaoxiao Li,&nbsp;Yu Yan,&nbsp;Yuan Yao,&nbsp;Yang Liu","doi":"10.1016/j.apsusc.2025.162829","DOIUrl":null,"url":null,"abstract":"<div><div>The development of efficient oxygen evolution reaction electrocatalysts is crucial for the sustainable conversion of clean energy sources. However, most catalytic materials that mainly adhere to the traditional adsorbate evolution mechanism or the lattice oxygen-mediated mechanism, often struggle to strike a balance between high activity and stability. Herein, we designed VN/C electrocatalyst that followed an unconventional oxide path mechanism. This catalyst triggered direct *O-O* radical coupling, resulting in a V-O-O-V intermediate and effectively bypassing the formation of *OOH species. It demonstrated excellent catalytic performance with low overpotentials of 221 and 280 mV at 10 and 50 mA cm<sup>−2</sup>, a small Tafel slope of 62.8 mV dec<sup>–1</sup>, a high Faraday efficiency of 98.6 % and remarkable stability under continuous 50 h operation (at 1.47 V vs. RHE). Furthermore, density functional theory (DFT) calculations and <em>in situ</em> infrared spectroscopy and Raman spectroscopy revealed that *O intermediates can be directly coupled to form *O-O* radical coupling at V sites, thus overcoming the limitations associated with the four-electron transfer steps in OER. This work offers valuable insights and foundation for the development of symmetric dual-site OER catalysts with oxide path mechanism.</div></div>","PeriodicalId":247,"journal":{"name":"Applied Surface Science","volume":"694 ","pages":"Article 162829"},"PeriodicalIF":6.3000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Surface Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169433225005434","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The development of efficient oxygen evolution reaction electrocatalysts is crucial for the sustainable conversion of clean energy sources. However, most catalytic materials that mainly adhere to the traditional adsorbate evolution mechanism or the lattice oxygen-mediated mechanism, often struggle to strike a balance between high activity and stability. Herein, we designed VN/C electrocatalyst that followed an unconventional oxide path mechanism. This catalyst triggered direct *O-O* radical coupling, resulting in a V-O-O-V intermediate and effectively bypassing the formation of *OOH species. It demonstrated excellent catalytic performance with low overpotentials of 221 and 280 mV at 10 and 50 mA cm−2, a small Tafel slope of 62.8 mV dec–1, a high Faraday efficiency of 98.6 % and remarkable stability under continuous 50 h operation (at 1.47 V vs. RHE). Furthermore, density functional theory (DFT) calculations and in situ infrared spectroscopy and Raman spectroscopy revealed that *O intermediates can be directly coupled to form *O-O* radical coupling at V sites, thus overcoming the limitations associated with the four-electron transfer steps in OER. This work offers valuable insights and foundation for the development of symmetric dual-site OER catalysts with oxide path mechanism.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
开发高效的氧进化反应电催化剂对于清洁能源的可持续转化至关重要。然而,大多数催化材料主要遵循传统的吸附剂进化机制或晶格氧介导机制,往往难以在高活性和稳定性之间取得平衡。在此,我们设计了一种遵循非常规氧化物路径机制的 VN/C 电催化剂。这种催化剂可直接触发 *O-O* 自由基偶联,产生 V-O-O-V 中间体,有效绕过 *OOH 物种的形成。该催化剂具有出色的催化性能,在 10 mA cm-2 和 50 mA cm-2 条件下,过电位分别为 221 mV 和 280 mV,塔菲尔斜率小(62.8 mV dec-1),法拉第效率高达 98.6 %,并且在连续运行 50 小时(1.47 V 对 RHE)后具有显著的稳定性。此外,密度泛函理论(DFT)计算以及原位红外光谱和拉曼光谱显示,*O 中间体可以直接耦合,在 V 位点形成 *O-O* 自由基耦合,从而克服了 OER 中与四电子转移步骤相关的限制。这项工作为开发具有氧化物路径机制的对称双位点 OER 催化剂提供了宝贵的见解和基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Surface Science
Applied Surface Science 工程技术-材料科学:膜
CiteScore
12.50
自引率
7.50%
发文量
3393
审稿时长
67 days
期刊介绍: Applied Surface Science covers topics contributing to a better understanding of surfaces, interfaces, nanostructures and their applications. The journal is concerned with scientific research on the atomic and molecular level of material properties determined with specific surface analytical techniques and/or computational methods, as well as the processing of such structures.
期刊最新文献
Theoretical investigation to explore PdSnSe2-n/PdPSe (n = 0, 1, 2) heterostructures as advanced photocatalysts for water splitting applications Effective removal of Si contamination at the GaN regrowth interface through in-situ etching Improved biocompatibility of durable Si-DLC periodical nanocomposite coatings modified by plasma treatment for medical implants High efficiency removal OBS using a novel Fe-Co co-modified biochar activated peroxymonosulfate: Synergistic effects of Fe and Co Direct S-scheme SnS2/BN heterojunction: A promising photocatalyst for overall water splitting
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1