Fatigue strength optimization of high-strength steels by precisely controlling microstructure and inclusions

IF 11.2 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Journal of Materials Science & Technology Pub Date : 2025-02-28 DOI:10.1016/j.jmst.2025.01.018
Zikuan Xu, Peng Wang, Peng Zhang, Bin Wang, Yang Liu, Yikun Luan, Pei Wang, Dianzhong Li, Zhefeng Zhang
{"title":"Fatigue strength optimization of high-strength steels by precisely controlling microstructure and inclusions","authors":"Zikuan Xu, Peng Wang, Peng Zhang, Bin Wang, Yang Liu, Yikun Luan, Pei Wang, Dianzhong Li, Zhefeng Zhang","doi":"10.1016/j.jmst.2025.01.018","DOIUrl":null,"url":null,"abstract":"With the increasing demand for high-performance metallic materials, the improvement of fatigue strength (FS) has become a crucial issue. This study focuses on the AISI 52100 steel, a material with leading fatigue performance and low-cost raw material, aiming to further improve its FS. It is found that the fatigue damage mechanism of 52100 steels with different tensile strengths has undergone significant changes, and the inclusions, mainly nitride and oxide, are key factors limiting the further improvement of FS. Therefore, the size reduction and modification of inclusions were attempted through the rare earth addition and strict control of harmful elements. Combining targeted microstructure adjustment, the FS of the 52100 steel has been further enhanced to ∼1.6 GPa, exceeding that of other metallic materials (performed in uniaxial tension with a stress ratio of <em>R</em> = 0.1), and thus establishing it as a standout for its exceptional performance-to-cost ratio. By clarifying the influences of different types of inclusions on fatigue performance and establishing the correlation between micro-hardness (or strength) and FS, an optimization strategy for FS improvement of the 52100 steel was proposed. The FS has been improved by approximately 187 MPa at most by implementing this strategy. These achievements provide feasible technical approaches and theoretical foundations for the anti-fatigue design of metallic materials.","PeriodicalId":16154,"journal":{"name":"Journal of Materials Science & Technology","volume":"22 1","pages":""},"PeriodicalIF":11.2000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science & Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jmst.2025.01.018","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

With the increasing demand for high-performance metallic materials, the improvement of fatigue strength (FS) has become a crucial issue. This study focuses on the AISI 52100 steel, a material with leading fatigue performance and low-cost raw material, aiming to further improve its FS. It is found that the fatigue damage mechanism of 52100 steels with different tensile strengths has undergone significant changes, and the inclusions, mainly nitride and oxide, are key factors limiting the further improvement of FS. Therefore, the size reduction and modification of inclusions were attempted through the rare earth addition and strict control of harmful elements. Combining targeted microstructure adjustment, the FS of the 52100 steel has been further enhanced to ∼1.6 GPa, exceeding that of other metallic materials (performed in uniaxial tension with a stress ratio of R = 0.1), and thus establishing it as a standout for its exceptional performance-to-cost ratio. By clarifying the influences of different types of inclusions on fatigue performance and establishing the correlation between micro-hardness (or strength) and FS, an optimization strategy for FS improvement of the 52100 steel was proposed. The FS has been improved by approximately 187 MPa at most by implementing this strategy. These achievements provide feasible technical approaches and theoretical foundations for the anti-fatigue design of metallic materials.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Materials Science & Technology
Journal of Materials Science & Technology 工程技术-材料科学:综合
CiteScore
20.00
自引率
11.00%
发文量
995
审稿时长
13 days
期刊介绍: Journal of Materials Science & Technology strives to promote global collaboration in the field of materials science and technology. It primarily publishes original research papers, invited review articles, letters, research notes, and summaries of scientific achievements. The journal covers a wide range of materials science and technology topics, including metallic materials, inorganic nonmetallic materials, and composite materials.
期刊最新文献
Metal-single-atom anchored highly crystalline graphitic carbon nitride in photocatalysis Simultaneously enhanced strength and impact toughness in electron beam welded joints of near β titanium alloy thick plates via good coupling of multi-level lamellar microstructures Effect of HAGBs for ultra-high strength stainless steel on pitting /microcrack initiation with synergy between strain and corrosion environment Enhanced ductility and superior ductility isotropy of additively manufactured AlSi10Mg by homogenizing the grain orientation distribution Ternary metallic glass in unique atomic coordination structure and high energy state contributing to efficient photocatalytic degradation activity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1