An adaptive hybrid approach for online battery state of charge estimation

IF 8.9 2区 工程技术 Q1 ENERGY & FUELS Journal of energy storage Pub Date : 2025-03-02 DOI:10.1016/j.est.2025.116023
Qiongbin Lin , Huiyang Hong , Ruochen Huang , Yuhang Fan , Jia Chen , Yaxiong Wang , Zhimin Dan
{"title":"An adaptive hybrid approach for online battery state of charge estimation","authors":"Qiongbin Lin ,&nbsp;Huiyang Hong ,&nbsp;Ruochen Huang ,&nbsp;Yuhang Fan ,&nbsp;Jia Chen ,&nbsp;Yaxiong Wang ,&nbsp;Zhimin Dan","doi":"10.1016/j.est.2025.116023","DOIUrl":null,"url":null,"abstract":"<div><div>With the widespread adoption of electric vehicles (EVs) and energy storage in renewable energy systems, the use of lithium-ion batteries has increased significantly, making the battery safety performance a primary concern. The accurate state of charge (SOC) estimation can help mitigate the safety risks for the utilisation of EVs and renewable energy systems. Due to the dynamic and non-linear properties of batteries, an adaptive online SOC estimation is proposed in this paper by combining the online parameters estimation using equivalent circuit model (ECM) and the improved particle filter (PF) algorithm. It firstly deduces ECM parameters equations using bilinear transformation with the elimination of the variation caused by the ambient temperature. Then, the seeker optimization algorithm (SOA)-based fixed-length weighted least square (LS) algorithm is introduced to online estimate the battery parameters accurately. With the established ECM, the battery SOC can be estimated by the improved genetic algorithm (IGA) resampling-based PF algorithm, which effectively alleviates the particle degeneracy problem during the estimation, consequently, offering a better performance in SOC estimation. Both simulations and experiments have been conducted to validate the effectiveness of the proposed method. Compared with other existing algorithms, it shows that the proposed algorithm can accurately model the battery with the root mean squared error (RMSE) &lt;0.1 % and achieve the real-time SOC estimation with less computation burden and high accuracy.</div></div>","PeriodicalId":15942,"journal":{"name":"Journal of energy storage","volume":"115 ","pages":"Article 116023"},"PeriodicalIF":8.9000,"publicationDate":"2025-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of energy storage","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352152X25007364","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

With the widespread adoption of electric vehicles (EVs) and energy storage in renewable energy systems, the use of lithium-ion batteries has increased significantly, making the battery safety performance a primary concern. The accurate state of charge (SOC) estimation can help mitigate the safety risks for the utilisation of EVs and renewable energy systems. Due to the dynamic and non-linear properties of batteries, an adaptive online SOC estimation is proposed in this paper by combining the online parameters estimation using equivalent circuit model (ECM) and the improved particle filter (PF) algorithm. It firstly deduces ECM parameters equations using bilinear transformation with the elimination of the variation caused by the ambient temperature. Then, the seeker optimization algorithm (SOA)-based fixed-length weighted least square (LS) algorithm is introduced to online estimate the battery parameters accurately. With the established ECM, the battery SOC can be estimated by the improved genetic algorithm (IGA) resampling-based PF algorithm, which effectively alleviates the particle degeneracy problem during the estimation, consequently, offering a better performance in SOC estimation. Both simulations and experiments have been conducted to validate the effectiveness of the proposed method. Compared with other existing algorithms, it shows that the proposed algorithm can accurately model the battery with the root mean squared error (RMSE) <0.1 % and achieve the real-time SOC estimation with less computation burden and high accuracy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of energy storage
Journal of energy storage Energy-Renewable Energy, Sustainability and the Environment
CiteScore
11.80
自引率
24.50%
发文量
2262
审稿时长
69 days
期刊介绍: Journal of energy storage focusses on all aspects of energy storage, in particular systems integration, electric grid integration, modelling and analysis, novel energy storage technologies, sizing and management strategies, business models for operation of storage systems and energy storage developments worldwide.
期刊最新文献
Simple synthesis of high-performance α-NiS particles as battery-type cathode material for advanced hybrid supercapacitor application Two-stage trigger dispatch strategy for hydrogen-electricity integrated station based on hybrid energy storage under response willingness uncertainty Efficient and reversible hydrogen storage by light metal-doped BCN monolayers at room temperature Outstanding lithium storage performance of a copper coordination complex [Cu(DMSO)2]Cl2 as anode material for lithium-ion batteries Regulating NiMnO morphology to fine-tune CNTs growth from plastic wastes for engineering MnNiO/CNTs composite and energy storage
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1