Hongjun Tan , Zhiling Guo , Yuntian Chen , Haoran Zhang , Chenchen Song , Mingkun Jiang , Jinyue Yan
{"title":"PV potential analysis through deep learning and remote sensing-based urban land classification","authors":"Hongjun Tan , Zhiling Guo , Yuntian Chen , Haoran Zhang , Chenchen Song , Mingkun Jiang , Jinyue Yan","doi":"10.1016/j.apenergy.2025.125616","DOIUrl":null,"url":null,"abstract":"<div><div>Urban land utilization for commerce, residence, grassland, and other administrative subdivisions will affect the available area for renewable infrastructure setup, such as photovoltaic (PV) panels. Incorporating land use types into PV potential assessments is essential for optimizing space allocation, aligning with energy demand centers, and enhancing efficiency. To address the limitations of previous studies that overlook urban land use, this study introduces a framework leveraging remote sensing data and deep learning methods to achieve eight fine-grained and three coarse-grained land use classifications. The framework calculates the PV installation area for each land use type and evaluates their power generation potential based on the yearly average solar irradiance in 2023. Case studies demonstrate that Germany Heilbronn land is suitable for ground PV installations, with a power generation of 5333.85 GWh/year, and rooftop PV installations are the most productive for electricity generation in New Zealand Christchurch, with 3290.08 GWh/year. Unutilized land in Heilbronn and Commercial land in Christchurch is estimated to be the most productive per unit area. Finally, the uncertainty of the PV installation ratio by adopting <span><math><msub><mi>σ</mi><mi>i</mi></msub></math></span> and the confidence interval of potential estimation is discussed. This work experiments with the framework successfully and highlights the effects of the PV installation ratio on the power generation of each land use, providing valuable instructions for urban land utilization and PV installation.</div></div>","PeriodicalId":246,"journal":{"name":"Applied Energy","volume":"387 ","pages":"Article 125616"},"PeriodicalIF":10.1000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306261925003460","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Urban land utilization for commerce, residence, grassland, and other administrative subdivisions will affect the available area for renewable infrastructure setup, such as photovoltaic (PV) panels. Incorporating land use types into PV potential assessments is essential for optimizing space allocation, aligning with energy demand centers, and enhancing efficiency. To address the limitations of previous studies that overlook urban land use, this study introduces a framework leveraging remote sensing data and deep learning methods to achieve eight fine-grained and three coarse-grained land use classifications. The framework calculates the PV installation area for each land use type and evaluates their power generation potential based on the yearly average solar irradiance in 2023. Case studies demonstrate that Germany Heilbronn land is suitable for ground PV installations, with a power generation of 5333.85 GWh/year, and rooftop PV installations are the most productive for electricity generation in New Zealand Christchurch, with 3290.08 GWh/year. Unutilized land in Heilbronn and Commercial land in Christchurch is estimated to be the most productive per unit area. Finally, the uncertainty of the PV installation ratio by adopting and the confidence interval of potential estimation is discussed. This work experiments with the framework successfully and highlights the effects of the PV installation ratio on the power generation of each land use, providing valuable instructions for urban land utilization and PV installation.
期刊介绍:
Applied Energy serves as a platform for sharing innovations, research, development, and demonstrations in energy conversion, conservation, and sustainable energy systems. The journal covers topics such as optimal energy resource use, environmental pollutant mitigation, and energy process analysis. It welcomes original papers, review articles, technical notes, and letters to the editor. Authors are encouraged to submit manuscripts that bridge the gap between research, development, and implementation. The journal addresses a wide spectrum of topics, including fossil and renewable energy technologies, energy economics, and environmental impacts. Applied Energy also explores modeling and forecasting, conservation strategies, and the social and economic implications of energy policies, including climate change mitigation. It is complemented by the open-access journal Advances in Applied Energy.