Investigating the formation of microplastic aerosols and their dispersion in urban environments: A comparative physical modelling study of aerosol and gas dispersion
Hana Chaloupecká , Jan Suchánek , Jan Wild , Milan Mamula , Radka Kellnerová , Václav Nevrlý , Michal Dostál , Zdeněk Zelinger
{"title":"Investigating the formation of microplastic aerosols and their dispersion in urban environments: A comparative physical modelling study of aerosol and gas dispersion","authors":"Hana Chaloupecká , Jan Suchánek , Jan Wild , Milan Mamula , Radka Kellnerová , Václav Nevrlý , Michal Dostál , Zdeněk Zelinger","doi":"10.1016/j.apr.2025.102481","DOIUrl":null,"url":null,"abstract":"<div><div>Aerosols are present in almost all aspects of everyday life. Aerosols affect climate and health and arise in hazardous situations such as industrial accidents. In this study, we examined the generation of microplastic aerosols from polypropylene pipes used in drinking water systems and their dispersion in a simulated accident scenario using wind tunnel modelling. We compared aerosol and gas dispersion from a ground-level point source in a street canyon in a central European town. The results show that 185-nm UVC light generated stable microplastic aerosols (predominantly <1 μm) from the polypropylene. Although both the aerosol and gas dispersions exhibited recirculation and ventilation regions characteristic of an isolated roughness flow regime, their dispersion patterns differed. Vertically, the main gas dispersion field resembled an ellipse, whereas the main aerosol particles dispersion field resembled an anvil. Horizontally, gas was dispersed primarily perpendicular to the buildings, whereas aerosol particles were dispersed both perpendicular and parallel to the buildings.</div></div>","PeriodicalId":8604,"journal":{"name":"Atmospheric Pollution Research","volume":"16 6","pages":"Article 102481"},"PeriodicalIF":3.9000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Pollution Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1309104225000832","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Aerosols are present in almost all aspects of everyday life. Aerosols affect climate and health and arise in hazardous situations such as industrial accidents. In this study, we examined the generation of microplastic aerosols from polypropylene pipes used in drinking water systems and their dispersion in a simulated accident scenario using wind tunnel modelling. We compared aerosol and gas dispersion from a ground-level point source in a street canyon in a central European town. The results show that 185-nm UVC light generated stable microplastic aerosols (predominantly <1 μm) from the polypropylene. Although both the aerosol and gas dispersions exhibited recirculation and ventilation regions characteristic of an isolated roughness flow regime, their dispersion patterns differed. Vertically, the main gas dispersion field resembled an ellipse, whereas the main aerosol particles dispersion field resembled an anvil. Horizontally, gas was dispersed primarily perpendicular to the buildings, whereas aerosol particles were dispersed both perpendicular and parallel to the buildings.
期刊介绍:
Atmospheric Pollution Research (APR) is an international journal designed for the publication of articles on air pollution. Papers should present novel experimental results, theory and modeling of air pollution on local, regional, or global scales. Areas covered are research on inorganic, organic, and persistent organic air pollutants, air quality monitoring, air quality management, atmospheric dispersion and transport, air-surface (soil, water, and vegetation) exchange of pollutants, dry and wet deposition, indoor air quality, exposure assessment, health effects, satellite measurements, natural emissions, atmospheric chemistry, greenhouse gases, and effects on climate change.