Yu Zhao , Yuanmeng Song , Lulu Zhang , Jiansheng Cui , Wenzhong Tang
{"title":"Hydrological connectivity and dissolved organic matter impacts nitrogen and antibiotics fate in river-lake system before and after extreme wet season","authors":"Yu Zhao , Yuanmeng Song , Lulu Zhang , Jiansheng Cui , Wenzhong Tang","doi":"10.1016/j.jenvman.2025.124743","DOIUrl":null,"url":null,"abstract":"<div><div>The impact and mechanism of hydrological connectivity and dissolved organic matter on the fate of nitrogen and antibiotics are still lack off in a river-lake connected system under climate extreme events. This study examined the fate of NO<sub>3</sub><sup>−</sup>-N, 38 antibiotics, and dissolved organic matter (DOM) in Baiyangdian Basin, through dry and wet seasonal (after extreme rainfall) samplings at 2023. In the system, NO<sub>3</sub><sup>−</sup>-N and ∑antibiotics average concentrations were higher in the dry season, while the relative abundance of humic-like components was higher in the wet season. Spatial autocorrelation analysis showed that the high-high clusters of pollutants and DOM components were mainly distributed in rivers, and the temporal difference was significant. MixSIAR and PMF model were respectively applied to nitrogen and antibiotics sources apportionment. The results showed that non-point sources (NPS) of nitrogen and antibiotics exhibited an upward trend, while the point sources decreased from dry to wet seasons. Hydrological connectivity was characterized by using δ<sup>18</sup>O-H<sub>2</sub>O, which was higher in the wet season. Partial least squares path model revealed that hydrological connectivity directly impacted humic-like components, which were the direct influencing factor of the concentration and NPS for antibiotics and nitrogen in the connected system. Extreme rainfall weaken the impact of hydrological connectivity on the concentration and NPS of pollutants, while enhanced the impact of humic-like components on pollutants NPS. These findings clarified the impact mechanism of hydrological connectivity and DOM on nitrogen and antibiotics fate in the connected system, which plays an important role in future water quality management under extreme events.</div></div>","PeriodicalId":356,"journal":{"name":"Journal of Environmental Management","volume":"378 ","pages":"Article 124743"},"PeriodicalIF":8.0000,"publicationDate":"2025-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Management","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301479725007194","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The impact and mechanism of hydrological connectivity and dissolved organic matter on the fate of nitrogen and antibiotics are still lack off in a river-lake connected system under climate extreme events. This study examined the fate of NO3−-N, 38 antibiotics, and dissolved organic matter (DOM) in Baiyangdian Basin, through dry and wet seasonal (after extreme rainfall) samplings at 2023. In the system, NO3−-N and ∑antibiotics average concentrations were higher in the dry season, while the relative abundance of humic-like components was higher in the wet season. Spatial autocorrelation analysis showed that the high-high clusters of pollutants and DOM components were mainly distributed in rivers, and the temporal difference was significant. MixSIAR and PMF model were respectively applied to nitrogen and antibiotics sources apportionment. The results showed that non-point sources (NPS) of nitrogen and antibiotics exhibited an upward trend, while the point sources decreased from dry to wet seasons. Hydrological connectivity was characterized by using δ18O-H2O, which was higher in the wet season. Partial least squares path model revealed that hydrological connectivity directly impacted humic-like components, which were the direct influencing factor of the concentration and NPS for antibiotics and nitrogen in the connected system. Extreme rainfall weaken the impact of hydrological connectivity on the concentration and NPS of pollutants, while enhanced the impact of humic-like components on pollutants NPS. These findings clarified the impact mechanism of hydrological connectivity and DOM on nitrogen and antibiotics fate in the connected system, which plays an important role in future water quality management under extreme events.
期刊介绍:
The Journal of Environmental Management is a journal for the publication of peer reviewed, original research for all aspects of management and the managed use of the environment, both natural and man-made.Critical review articles are also welcome; submission of these is strongly encouraged.