Exploring the potential of general purpose LLMs in automated software refactoring: an empirical study

IF 2 2区 计算机科学 Q3 COMPUTER SCIENCE, SOFTWARE ENGINEERING Automated Software Engineering Pub Date : 2025-03-01 DOI:10.1007/s10515-025-00500-0
Bo Liu, Yanjie Jiang, Yuxia Zhang, Nan Niu, Guangjie Li, Hui Liu
{"title":"Exploring the potential of general purpose LLMs in automated software refactoring: an empirical study","authors":"Bo Liu,&nbsp;Yanjie Jiang,&nbsp;Yuxia Zhang,&nbsp;Nan Niu,&nbsp;Guangjie Li,&nbsp;Hui Liu","doi":"10.1007/s10515-025-00500-0","DOIUrl":null,"url":null,"abstract":"<div><p>Software refactoring is an essential activity for improving the readability, maintainability, and reusability of software projects. To this end, a large number of automated or semi-automated approaches/tools have been proposed to locate poorly designed code, recommend refactoring solutions, and conduct specified refactorings. However, even equipped with such tools, it remains challenging for developers to decide where and what kind of refactorings should be applied. Recent advances in deep learning techniques, especially in large language models (LLMs), make it potentially feasible to automatically refactor source code with LLMs. However, it remains unclear how well LLMs perform compared to human experts in conducting refactorings automatically and accurately. To fill this gap, in this paper, we conduct an empirical study to investigate the potential of LLMs in automated software refactoring, focusing on the identification of refactoring opportunities and the recommendation of refactoring solutions. We first construct a high-quality refactoring dataset comprising 180 real-world refactorings from 20 projects, and conduct the empirical study on the dataset. With the to-be-refactored Java documents as input, ChatGPT and Gemini identified only 28 and 7 respectively out of the 180 refactoring opportunities. The evaluation results suggested that the performance of LLMs in identifying refactoring opportunities is generally low and remains an open problem. However, explaining the expected refactoring subcategories and narrowing the search space in the prompts substantially increased the success rate of ChatGPT from 15.6 to 86.7%. Concerning the recommendation of refactoring solutions, ChatGPT recommended 176 refactoring solutions for the 180 refactorings, and 63.6% of the recommended solutions were comparable to (even better than) those constructed by human experts. However, 13 out of the 176 solutions suggested by ChatGPT and 9 out of the 137 solutions suggested by Gemini were unsafe in that they either changed the functionality of the source code or introduced syntax errors, which indicate the risk of LLM-based refactoring.</p></div>","PeriodicalId":55414,"journal":{"name":"Automated Software Engineering","volume":"32 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automated Software Engineering","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10515-025-00500-0","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Software refactoring is an essential activity for improving the readability, maintainability, and reusability of software projects. To this end, a large number of automated or semi-automated approaches/tools have been proposed to locate poorly designed code, recommend refactoring solutions, and conduct specified refactorings. However, even equipped with such tools, it remains challenging for developers to decide where and what kind of refactorings should be applied. Recent advances in deep learning techniques, especially in large language models (LLMs), make it potentially feasible to automatically refactor source code with LLMs. However, it remains unclear how well LLMs perform compared to human experts in conducting refactorings automatically and accurately. To fill this gap, in this paper, we conduct an empirical study to investigate the potential of LLMs in automated software refactoring, focusing on the identification of refactoring opportunities and the recommendation of refactoring solutions. We first construct a high-quality refactoring dataset comprising 180 real-world refactorings from 20 projects, and conduct the empirical study on the dataset. With the to-be-refactored Java documents as input, ChatGPT and Gemini identified only 28 and 7 respectively out of the 180 refactoring opportunities. The evaluation results suggested that the performance of LLMs in identifying refactoring opportunities is generally low and remains an open problem. However, explaining the expected refactoring subcategories and narrowing the search space in the prompts substantially increased the success rate of ChatGPT from 15.6 to 86.7%. Concerning the recommendation of refactoring solutions, ChatGPT recommended 176 refactoring solutions for the 180 refactorings, and 63.6% of the recommended solutions were comparable to (even better than) those constructed by human experts. However, 13 out of the 176 solutions suggested by ChatGPT and 9 out of the 137 solutions suggested by Gemini were unsafe in that they either changed the functionality of the source code or introduced syntax errors, which indicate the risk of LLM-based refactoring.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Automated Software Engineering
Automated Software Engineering 工程技术-计算机:软件工程
CiteScore
4.80
自引率
11.80%
发文量
51
审稿时长
>12 weeks
期刊介绍: This journal details research, tutorial papers, survey and accounts of significant industrial experience in the foundations, techniques, tools and applications of automated software engineering technology. This includes the study of techniques for constructing, understanding, adapting, and modeling software artifacts and processes. Coverage in Automated Software Engineering examines both automatic systems and collaborative systems as well as computational models of human software engineering activities. In addition, it presents knowledge representations and artificial intelligence techniques applicable to automated software engineering, and formal techniques that support or provide theoretical foundations. The journal also includes reviews of books, software, conferences and workshops.
期刊最新文献
A study on prompt design, advantages and limitations of ChatGPT for deep learning program repair BallPri: test cases prioritization for deep neuron networks via tolerant ball in variable space Bash command comment generation via multi-scale heterogeneous feature fusion Quantum software engineering and potential of quantum computing in software engineering research: a review Exploring the potential of general purpose LLMs in automated software refactoring: an empirical study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1