Energy ratio controlled gate-tuning four-wave mixing in monolayer graphene.

IF 3.1 2区 物理与天体物理 Q2 OPTICS Optics letters Pub Date : 2025-03-01 DOI:10.1364/OL.545929
Chenyu Wan, Renkang Song, Anhang Liu, Shen-Ao Zhao, Xiangkun Zeng, Lei Zhou, Jin Wang, Fang Wang, Zhanshan Wang, Xinbin Cheng, Di Huang, Tao Jiang
{"title":"Energy ratio controlled gate-tuning four-wave mixing in monolayer graphene.","authors":"Chenyu Wan, Renkang Song, Anhang Liu, Shen-Ao Zhao, Xiangkun Zeng, Lei Zhou, Jin Wang, Fang Wang, Zhanshan Wang, Xinbin Cheng, Di Huang, Tao Jiang","doi":"10.1364/OL.545929","DOIUrl":null,"url":null,"abstract":"<p><p>Monolayer graphene, with a gapless conical electronic band structure, demonstrates scale invariance, showing universal linear optical responses. The impacts of this feature on nonlinear optical responses remain unclear. Our work reveals that the gate-tunable difference-frequency four-wave mixing (DFM) responses in monolayer graphene are significantly influenced by the energy ratios between excitation photons. This effect arises from scale invariance, rather than their absolute energies. Through theoretical analysis, we show that these energy ratios critically impact the DFM response relative to the chemical potential by tailoring the sequence, magnitude, and phase of resonant channels involved. Our findings deepen the understanding of the gate-tuning behavior in the nonlinear optical responses from materials featuring Dirac cones, paving the way for innovative nonlinear photonic applications.</p>","PeriodicalId":19540,"journal":{"name":"Optics letters","volume":"50 5","pages":"1520-1523"},"PeriodicalIF":3.1000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1364/OL.545929","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Monolayer graphene, with a gapless conical electronic band structure, demonstrates scale invariance, showing universal linear optical responses. The impacts of this feature on nonlinear optical responses remain unclear. Our work reveals that the gate-tunable difference-frequency four-wave mixing (DFM) responses in monolayer graphene are significantly influenced by the energy ratios between excitation photons. This effect arises from scale invariance, rather than their absolute energies. Through theoretical analysis, we show that these energy ratios critically impact the DFM response relative to the chemical potential by tailoring the sequence, magnitude, and phase of resonant channels involved. Our findings deepen the understanding of the gate-tuning behavior in the nonlinear optical responses from materials featuring Dirac cones, paving the way for innovative nonlinear photonic applications.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Optics letters
Optics letters 物理-光学
CiteScore
6.60
自引率
8.30%
发文量
2275
审稿时长
1.7 months
期刊介绍: The Optical Society (OSA) publishes high-quality, peer-reviewed articles in its portfolio of journals, which serve the full breadth of the optics and photonics community. Optics Letters offers rapid dissemination of new results in all areas of optics with short, original, peer-reviewed communications. Optics Letters covers the latest research in optical science, including optical measurements, optical components and devices, atmospheric optics, biomedical optics, Fourier optics, integrated optics, optical processing, optoelectronics, lasers, nonlinear optics, optical storage and holography, optical coherence, polarization, quantum electronics, ultrafast optical phenomena, photonic crystals, and fiber optics. Criteria used in determining acceptability of contributions include newsworthiness to a substantial part of the optics community and the effect of rapid publication on the research of others. This journal, published twice each month, is where readers look for the latest discoveries in optics.
期刊最新文献
Effect of temperature on Brillouin scattering in gas-filled hollow-core fibers. Energy ratio controlled gate-tuning four-wave mixing in monolayer graphene. 100 W orbital angular momentum laser at 2 µm. Acousto-optically Q-switched Nd:YLF/KGW/LBO Raman yellow laser operating at 578 nm. Alleviation of DC drift in a thin-film lithium niobate modulator utilizing Ar+ ion milling.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1