Zhaoqian Yan, Wenguang Zheng, Gongtao Hao, Yajuan Wei, Mengmeng Luo
{"title":"Recent advances in MXene catalyst towards enhanced hydrogen storage of Mg/MgH2: A review.","authors":"Zhaoqian Yan, Wenguang Zheng, Gongtao Hao, Yajuan Wei, Mengmeng Luo","doi":"10.1088/1361-6528/adbb72","DOIUrl":null,"url":null,"abstract":"<p><p>Hydrogen is regarded as an ideal substitute for fossil fuels on account of its advantages of high energy density, zero carbon emissions, and abundant reserves. Solid-state hydrogen storage is one of the most promising hydrogen storage methods in terms of high-volume storage density and safety. MgH2 is a promising solid hydrogen storage material because of its high hydrogen storage capacity and favorable cycle reversibility. Nevertheless, its inferior thermodynamic and kinetic properties restrict its extensive application. Catalyst modification is considered to be an efficient way to enhance the thermodynamic and kinetic properties of hydrogenation and dehydrogenation for MgH2. This review summarizes the latest research progress on MXene-based composites, such as MAX, single metal MXene, bimetallic MXene, MXene/elemental metal, and MXene/transition metal compounds for promoting the hydrogen storage performances of MgH2. At the same time, the catalyst of MXene-based composites to optimize the hydrogenation/dehydrogenation kinetics, long cycle performance and catalytic mechanism of Mg/MgH2 are discussed in detail.</p>","PeriodicalId":19035,"journal":{"name":"Nanotechnology","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/1361-6528/adbb72","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Hydrogen is regarded as an ideal substitute for fossil fuels on account of its advantages of high energy density, zero carbon emissions, and abundant reserves. Solid-state hydrogen storage is one of the most promising hydrogen storage methods in terms of high-volume storage density and safety. MgH2 is a promising solid hydrogen storage material because of its high hydrogen storage capacity and favorable cycle reversibility. Nevertheless, its inferior thermodynamic and kinetic properties restrict its extensive application. Catalyst modification is considered to be an efficient way to enhance the thermodynamic and kinetic properties of hydrogenation and dehydrogenation for MgH2. This review summarizes the latest research progress on MXene-based composites, such as MAX, single metal MXene, bimetallic MXene, MXene/elemental metal, and MXene/transition metal compounds for promoting the hydrogen storage performances of MgH2. At the same time, the catalyst of MXene-based composites to optimize the hydrogenation/dehydrogenation kinetics, long cycle performance and catalytic mechanism of Mg/MgH2 are discussed in detail.
期刊介绍:
The journal aims to publish papers at the forefront of nanoscale science and technology and especially those of an interdisciplinary nature. Here, nanotechnology is taken to include the ability to individually address, control, and modify structures, materials and devices with nanometre precision, and the synthesis of such structures into systems of micro- and macroscopic dimensions such as MEMS based devices. It encompasses the understanding of the fundamental physics, chemistry, biology and technology of nanometre-scale objects and how such objects can be used in the areas of computation, sensors, nanostructured materials and nano-biotechnology.