Rapid high-fidelity quantum simulations using multi-step nonlinear autoregression and graph embeddings

IF 9.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL npj Computational Materials Pub Date : 2025-03-02 DOI:10.1038/s41524-024-01479-0
Akeel A. Shah, P. K. Leung, W. W. Xing
{"title":"Rapid high-fidelity quantum simulations using multi-step nonlinear autoregression and graph embeddings","authors":"Akeel A. Shah, P. K. Leung, W. W. Xing","doi":"10.1038/s41524-024-01479-0","DOIUrl":null,"url":null,"abstract":"<p>The design and high-throughput screening of materials using machine-learning assisted quantum-mechanical simulations typically requires the existence of a very large data set, often generated from simulations at a high level of theory or fidelity. A single simulation at high fidelity can take on the order of days for a complex molecule. Thus, although machine learning surrogate simulations seem promising at first glance, generation of the training data can defeat the original purpose. For this reason, the use of machine learning to screen or design materials remains elusive for many important applications. In this paper we introduce a new multi-fidelity approach based on a dual graph embedding to extract features that are placed inside a nonlinear multi-step autoregressive model. Experiments on five benchmark problems, with 14 different quantities and 27 different levels of theory, demonstrate the generalizability and high accuracy of the approach. It typically requires a few 10s to a few 1000’s of high-fidelity training points, which is several orders of magnitude lower than direct ML methods, and can be up to two orders of magnitude lower than other multi-fidelity methods. Furthermore, we develop a new benchmark data set for 860 benzoquinone molecules with up to 14 atoms, containing energy, HOMO, LUMO and dipole moment values at four levels of theory, up to coupled cluster with singles and doubles.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"52 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2025-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Computational Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41524-024-01479-0","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The design and high-throughput screening of materials using machine-learning assisted quantum-mechanical simulations typically requires the existence of a very large data set, often generated from simulations at a high level of theory or fidelity. A single simulation at high fidelity can take on the order of days for a complex molecule. Thus, although machine learning surrogate simulations seem promising at first glance, generation of the training data can defeat the original purpose. For this reason, the use of machine learning to screen or design materials remains elusive for many important applications. In this paper we introduce a new multi-fidelity approach based on a dual graph embedding to extract features that are placed inside a nonlinear multi-step autoregressive model. Experiments on five benchmark problems, with 14 different quantities and 27 different levels of theory, demonstrate the generalizability and high accuracy of the approach. It typically requires a few 10s to a few 1000’s of high-fidelity training points, which is several orders of magnitude lower than direct ML methods, and can be up to two orders of magnitude lower than other multi-fidelity methods. Furthermore, we develop a new benchmark data set for 860 benzoquinone molecules with up to 14 atoms, containing energy, HOMO, LUMO and dipole moment values at four levels of theory, up to coupled cluster with singles and doubles.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用多步非线性自回归和图嵌入进行快速高保真量子模拟
利用机器学习辅助量子力学模拟进行材料设计和高通量筛选通常需要一个非常庞大的数据集,这些数据集通常由高水平理论或高保真模拟生成。对于复杂分子而言,一次高保真模拟可能需要数天时间。因此,尽管机器学习代用模拟乍看起来很有前景,但生成训练数据可能会违背初衷。因此,在许多重要的应用中,使用机器学习来筛选或设计材料仍然难以实现。在本文中,我们介绍了一种基于双图嵌入的全新多保真度方法,以提取放置在非线性多步自回归模型中的特征。在五个基准问题上的实验证明了该方法的通用性和高准确性,这些问题涉及 14 个不同的数量和 27 个不同的理论层次。它通常只需要几十到几千个高保真训练点,比直接 ML 方法低几个数量级,比其他多保真方法低两个数量级。此外,我们还为多达 14 个原子的 860 个苯醌分子开发了一个新的基准数据集,其中包含四个理论水平的能量、HOMO、LUMO 和偶极矩值,直至单原子和双原子耦合簇。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
npj Computational Materials
npj Computational Materials Mathematics-Modeling and Simulation
CiteScore
15.30
自引率
5.20%
发文量
229
审稿时长
6 weeks
期刊介绍: npj Computational Materials is a high-quality open access journal from Nature Research that publishes research papers applying computational approaches for the design of new materials and enhancing our understanding of existing ones. The journal also welcomes papers on new computational techniques and the refinement of current approaches that support these aims, as well as experimental papers that complement computational findings. Some key features of npj Computational Materials include a 2-year impact factor of 12.241 (2021), article downloads of 1,138,590 (2021), and a fast turnaround time of 11 days from submission to the first editorial decision. The journal is indexed in various databases and services, including Chemical Abstracts Service (ACS), Astrophysics Data System (ADS), Current Contents/Physical, Chemical and Earth Sciences, Journal Citation Reports/Science Edition, SCOPUS, EI Compendex, INSPEC, Google Scholar, SCImago, DOAJ, CNKI, and Science Citation Index Expanded (SCIE), among others.
期刊最新文献
Rapid high-fidelity quantum simulations using multi-step nonlinear autoregression and graph embeddings Design of 2D skyrmionic metamaterials through controlled assembly MGNN: Moment Graph Neural Network for Universal Molecular Potentials Understanding phase transitions of α-quartz under dynamic compression conditions by machine-learning driven atomistic simulations Stacking-dependent electronic and topological properties in van der Waals antiferromagnet MnBi2Te4 films
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1