Jinyu Chang, Ning Ding, Qi Sun*, Zihao Wei, Ziheng Zhan, Xiaoting Ren, Jinxuan He, Shenghua Li* and Siping Pang*,
{"title":"In-Situ Modulation of Weak Interactions within a Hydrogen-Bonded Metal–Organic Framework (HMOF) for Superior Propellant Application","authors":"Jinyu Chang, Ning Ding, Qi Sun*, Zihao Wei, Ziheng Zhan, Xiaoting Ren, Jinxuan He, Shenghua Li* and Siping Pang*, ","doi":"10.1021/acsmaterialslett.4c0261210.1021/acsmaterialslett.4c02612","DOIUrl":null,"url":null,"abstract":"<p >In this study, we demonstrate the targeted insertion of additional Cu(II) into a hydrogen-bonded metal–organic framework, HMOF(Cu-atrz-nt), thereby achieving the in-situ modulation of hydrogen bonds (HBs) into coordination bonds (CBs) with virtually no alteration to the framework structure, converting HMOF(Cu-atrz-nt) into a purely coordinated MOF(Cu-atrz-nt). Significantly different from classical MOF-5 and ZIF-8, HMOF(Cu-atrz-nt) and MOF(Cu-atrz-nt) exhibit markedly stronger exothermicity along with truncated HB and CB characteristics and electronic properties, showing outstanding but distinct catalytic combustion effects on key propellant components such as RDX, HMX, CL-20, and AP. This study aims to enhance the comprehension of the weak interactions of framework materials while uncovering novel and exciting prospects for practical applications.</p>","PeriodicalId":19,"journal":{"name":"ACS Materials Letters","volume":"7 3","pages":"1112–1118 1112–1118"},"PeriodicalIF":9.6000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Materials Letters","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsmaterialslett.4c02612","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, we demonstrate the targeted insertion of additional Cu(II) into a hydrogen-bonded metal–organic framework, HMOF(Cu-atrz-nt), thereby achieving the in-situ modulation of hydrogen bonds (HBs) into coordination bonds (CBs) with virtually no alteration to the framework structure, converting HMOF(Cu-atrz-nt) into a purely coordinated MOF(Cu-atrz-nt). Significantly different from classical MOF-5 and ZIF-8, HMOF(Cu-atrz-nt) and MOF(Cu-atrz-nt) exhibit markedly stronger exothermicity along with truncated HB and CB characteristics and electronic properties, showing outstanding but distinct catalytic combustion effects on key propellant components such as RDX, HMX, CL-20, and AP. This study aims to enhance the comprehension of the weak interactions of framework materials while uncovering novel and exciting prospects for practical applications.
期刊介绍:
ACS Materials Letters is a journal that publishes high-quality and urgent papers at the forefront of fundamental and applied research in the field of materials science. It aims to bridge the gap between materials and other disciplines such as chemistry, engineering, and biology. The journal encourages multidisciplinary and innovative research that addresses global challenges. Papers submitted to ACS Materials Letters should clearly demonstrate the need for rapid disclosure of key results. The journal is interested in various areas including the design, synthesis, characterization, and evaluation of emerging materials, understanding the relationships between structure, property, and performance, as well as developing materials for applications in energy, environment, biomedical, electronics, and catalysis. The journal has a 2-year impact factor of 11.4 and is dedicated to publishing transformative materials research with fast processing times. The editors and staff of ACS Materials Letters actively participate in major scientific conferences and engage closely with readers and authors. The journal also maintains an active presence on social media to provide authors with greater visibility.