Macro- and micro-mechanical response and damage mechanism of sandstone under high-temperature conditions

IF 11.7 1区 工程技术 Q1 MINING & MINERAL PROCESSING International Journal of Mining Science and Technology Pub Date : 2025-02-01 DOI:10.1016/j.ijmst.2025.01.004
Laiwei Wu , Yanli Huang , Junmeng Li , Guiyuan Wang , Yingshun Li , Xiaotong Li , Junzhi Chen , Chuning Ji
{"title":"Macro- and micro-mechanical response and damage mechanism of sandstone under high-temperature conditions","authors":"Laiwei Wu ,&nbsp;Yanli Huang ,&nbsp;Junmeng Li ,&nbsp;Guiyuan Wang ,&nbsp;Yingshun Li ,&nbsp;Xiaotong Li ,&nbsp;Junzhi Chen ,&nbsp;Chuning Ji","doi":"10.1016/j.ijmst.2025.01.004","DOIUrl":null,"url":null,"abstract":"<div><div>The thermal effects of coal combustion considerably influence the physical and chemical properties, structural characteristics, and stability of rocks, posing a serious threat to the safety of coal mining operations. In this study, the impacts of temperature on the physical and chemical characteristics (i.e., mineral phase, microstructure, and mechanical strength) of sandstone were investigated by employing experimental methods, including microstructural analysis, uniaxial acoustic emission (AE), and nuclear magnetic resonance (NMR). The results indicate that temperature alters the mineral phase and the pore characteristics, and these two factors jointly affect the mechanical properties of sandstone. The influence of temperature on the mechanical strength of sandstone is categorized into low-temperature strengthening and high-temperature damage, with a threshold temperature identified at 600 °C. The low-temperature strengthening effect encompasses both pore strengthening and mineral phase strengthening, while the high-temperature damage effect primarily results from pore damage. As the experimental temperature rises, both the number of AE events and the AE energy transition from a surge in the post-peak failure stage to a stepwise increase during the loading process. This transition implies that the failure mode of the sandstone sample evolves from brittle failure to tensile failure.</div></div>","PeriodicalId":48625,"journal":{"name":"International Journal of Mining Science and Technology","volume":"35 2","pages":"Pages 265-274"},"PeriodicalIF":11.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mining Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095268625000163","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MINING & MINERAL PROCESSING","Score":null,"Total":0}
引用次数: 0

Abstract

The thermal effects of coal combustion considerably influence the physical and chemical properties, structural characteristics, and stability of rocks, posing a serious threat to the safety of coal mining operations. In this study, the impacts of temperature on the physical and chemical characteristics (i.e., mineral phase, microstructure, and mechanical strength) of sandstone were investigated by employing experimental methods, including microstructural analysis, uniaxial acoustic emission (AE), and nuclear magnetic resonance (NMR). The results indicate that temperature alters the mineral phase and the pore characteristics, and these two factors jointly affect the mechanical properties of sandstone. The influence of temperature on the mechanical strength of sandstone is categorized into low-temperature strengthening and high-temperature damage, with a threshold temperature identified at 600 °C. The low-temperature strengthening effect encompasses both pore strengthening and mineral phase strengthening, while the high-temperature damage effect primarily results from pore damage. As the experimental temperature rises, both the number of AE events and the AE energy transition from a surge in the post-peak failure stage to a stepwise increase during the loading process. This transition implies that the failure mode of the sandstone sample evolves from brittle failure to tensile failure.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Mining Science and Technology
International Journal of Mining Science and Technology Earth and Planetary Sciences-Geotechnical Engineering and Engineering Geology
CiteScore
19.10
自引率
11.90%
发文量
2541
审稿时长
44 days
期刊介绍: The International Journal of Mining Science and Technology, founded in 1990 as the Journal of China University of Mining and Technology, is a monthly English-language journal. It publishes original research papers and high-quality reviews that explore the latest advancements in theories, methodologies, and applications within the realm of mining sciences and technologies. The journal serves as an international exchange forum for readers and authors worldwide involved in mining sciences and technologies. All papers undergo a peer-review process and meticulous editing by specialists and authorities, with the entire submission-to-publication process conducted electronically.
期刊最新文献
Multi-frequency formation mechanism and modulation strategy of self-priming enhanced submerged pulsed waterjet Upgrading of 6–0 mm low rank high sulfur lignite by a compound dry cascade separation bed Cyclic loading of marble: Correlating the attenuation of the electric and acoustic activities and highlighting criticality indices in terms of natural time Response properties of geometries of coal penetrating fracture on seepage behavior Investigation on coal damage and fracture extension law of liquid nitrogen injection pre-cooling and fracturing under true triaxial stress
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1