Shaojie Zuo , Rui Gan , Zhijie Wen , Liang Zhang , Zhizhong Jiang , Fuping Zhao , Chengwei Liu , Kun Li , Zhiyuan Xu
{"title":"Effect of acid fracturing fluid modifying coal microstructure stimulated by ultrasonic","authors":"Shaojie Zuo , Rui Gan , Zhijie Wen , Liang Zhang , Zhizhong Jiang , Fuping Zhao , Chengwei Liu , Kun Li , Zhiyuan Xu","doi":"10.1016/j.ijmst.2025.01.005","DOIUrl":null,"url":null,"abstract":"<div><div>The combination of ultrasonic and acid fracturing fluid can strengthen the modification effect on the micropore structure of the coal matrix, thereby enhancing the efficiency of the acid fracturing process. In this research, acetic acid was utilized to formulate acid fracturing fluids with varying concentrations, and the evolutionary traits of both the acid fracturing fluids and ultrasonic waves in relation to coal samples were investigated. The functional group structure, mineral composition, micropore structure and surface morphology of coal samples were characterized by FTIR, XRD, N<sub>2</sub> adsorption at low temperature and SEM-EDS. The results showed that aromatics (<em>I</em>) and branching parameters (CH<sub>2</sub>/CH<sub>3</sub>) were reduced by 81.58% and 88.67%, respectively, after 9% acetic acid treatment. Acetic acid can dissolve carbonates and clay minerals in coal, create new pores, and increase porosity, pore volume and pore fractal dimension. After modification by 7% acetic acid, the pore volume increased by 5.7 times. SEM observation shows that the diameter of coal surface holes increases, EDS scanning shows that the content of mineral elements in coal decreases, the connectivity of coal holes increases, and the holes expand. The findings of this research offer theoretical direction for optimizing ultrasonic-enhanced acid fracturing fluid modification.</div></div>","PeriodicalId":48625,"journal":{"name":"International Journal of Mining Science and Technology","volume":"35 2","pages":"Pages 275-293"},"PeriodicalIF":11.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mining Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095268625000175","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MINING & MINERAL PROCESSING","Score":null,"Total":0}
引用次数: 0
Abstract
The combination of ultrasonic and acid fracturing fluid can strengthen the modification effect on the micropore structure of the coal matrix, thereby enhancing the efficiency of the acid fracturing process. In this research, acetic acid was utilized to formulate acid fracturing fluids with varying concentrations, and the evolutionary traits of both the acid fracturing fluids and ultrasonic waves in relation to coal samples were investigated. The functional group structure, mineral composition, micropore structure and surface morphology of coal samples were characterized by FTIR, XRD, N2 adsorption at low temperature and SEM-EDS. The results showed that aromatics (I) and branching parameters (CH2/CH3) were reduced by 81.58% and 88.67%, respectively, after 9% acetic acid treatment. Acetic acid can dissolve carbonates and clay minerals in coal, create new pores, and increase porosity, pore volume and pore fractal dimension. After modification by 7% acetic acid, the pore volume increased by 5.7 times. SEM observation shows that the diameter of coal surface holes increases, EDS scanning shows that the content of mineral elements in coal decreases, the connectivity of coal holes increases, and the holes expand. The findings of this research offer theoretical direction for optimizing ultrasonic-enhanced acid fracturing fluid modification.
期刊介绍:
The International Journal of Mining Science and Technology, founded in 1990 as the Journal of China University of Mining and Technology, is a monthly English-language journal. It publishes original research papers and high-quality reviews that explore the latest advancements in theories, methodologies, and applications within the realm of mining sciences and technologies. The journal serves as an international exchange forum for readers and authors worldwide involved in mining sciences and technologies. All papers undergo a peer-review process and meticulous editing by specialists and authorities, with the entire submission-to-publication process conducted electronically.