J.L. Rosales-Lopez , M. Olivares-Luna , L.E. Castillo-Vela , K.D. Chaparro-Pérez , F.P. Espino-Cortés , I. Campos-Silva
{"title":"Insights on the Pulsed-DC Powder-Pack Boriding Process: Effect of current density and electric field implications on the FeB and Fe2B growth kinetics","authors":"J.L. Rosales-Lopez , M. Olivares-Luna , L.E. Castillo-Vela , K.D. Chaparro-Pérez , F.P. Espino-Cortés , I. Campos-Silva","doi":"10.1016/j.surfcoat.2025.131965","DOIUrl":null,"url":null,"abstract":"<div><div>This study examines the impact of current density on the growth kinetics of boride layers during the Pulsed-DC Powder-Pack Boriding (PDCPB). It explores the combined effects of thermally activated diffusion (TD) and electromigration (EM) on boride layer growth kinetics. The analysis assesses how variations in electrical parameters and the properties of the boriding media (particularly electrical resistance and thermal phenomena influenced by components such as KBF<sub>4</sub>, B<sub>4</sub>C, and SiC) affect overall mass transfer mechanism.</div><div>Initial observations indicated a temperature increase related to the Joule effect (~100 K for the entire experimental set), which correlated with the applied current density and the resistive behavior of the semiconductor elements within the boriding media. Additionally, the B activation energies in FeB and Fe<sub>2</sub>B phases, estimated at a current density of 460 mA·cm<sup>−2</sup>, was found to be ~9 % lower compared to that at 230 mA·cm<sup>−2</sup>. A reduction of ~19 % and ~ 25 % in B activation energies for boride layer formation at 230 mA·cm<sup>−2</sup> and 460 mA·cm<sup>−2</sup>, respectively, was noted compared to conventional boriding processes.</div><div>These findings suggest an enhancement in B diffusivity attributable to the electric field. However, while higher temperatures and current densities shorten the boride layer incubation time, differentiating the contributions of TD and EM remains a challenge.</div></div>","PeriodicalId":22009,"journal":{"name":"Surface & Coatings Technology","volume":"502 ","pages":"Article 131965"},"PeriodicalIF":5.3000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface & Coatings Technology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0257897225002397","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
引用次数: 0
Abstract
This study examines the impact of current density on the growth kinetics of boride layers during the Pulsed-DC Powder-Pack Boriding (PDCPB). It explores the combined effects of thermally activated diffusion (TD) and electromigration (EM) on boride layer growth kinetics. The analysis assesses how variations in electrical parameters and the properties of the boriding media (particularly electrical resistance and thermal phenomena influenced by components such as KBF4, B4C, and SiC) affect overall mass transfer mechanism.
Initial observations indicated a temperature increase related to the Joule effect (~100 K for the entire experimental set), which correlated with the applied current density and the resistive behavior of the semiconductor elements within the boriding media. Additionally, the B activation energies in FeB and Fe2B phases, estimated at a current density of 460 mA·cm−2, was found to be ~9 % lower compared to that at 230 mA·cm−2. A reduction of ~19 % and ~ 25 % in B activation energies for boride layer formation at 230 mA·cm−2 and 460 mA·cm−2, respectively, was noted compared to conventional boriding processes.
These findings suggest an enhancement in B diffusivity attributable to the electric field. However, while higher temperatures and current densities shorten the boride layer incubation time, differentiating the contributions of TD and EM remains a challenge.
期刊介绍:
Surface and Coatings Technology is an international archival journal publishing scientific papers on significant developments in surface and interface engineering to modify and improve the surface properties of materials for protection in demanding contact conditions or aggressive environments, or for enhanced functional performance. Contributions range from original scientific articles concerned with fundamental and applied aspects of research or direct applications of metallic, inorganic, organic and composite coatings, to invited reviews of current technology in specific areas. Papers submitted to this journal are expected to be in line with the following aspects in processes, and properties/performance:
A. Processes: Physical and chemical vapour deposition techniques, thermal and plasma spraying, surface modification by directed energy techniques such as ion, electron and laser beams, thermo-chemical treatment, wet chemical and electrochemical processes such as plating, sol-gel coating, anodization, plasma electrolytic oxidation, etc., but excluding painting.
B. Properties/performance: friction performance, wear resistance (e.g., abrasion, erosion, fretting, etc), corrosion and oxidation resistance, thermal protection, diffusion resistance, hydrophilicity/hydrophobicity, and properties relevant to smart materials behaviour and enhanced multifunctional performance for environmental, energy and medical applications, but excluding device aspects.