Recent progress in aqueous zinc-ion batteries based on conversion-type cathodes

Yanan Cao , Shidi Ju , Qian Zhang , Kun Gao , Augusto Marcelli , Zhipan Zhang
{"title":"Recent progress in aqueous zinc-ion batteries based on conversion-type cathodes","authors":"Yanan Cao ,&nbsp;Shidi Ju ,&nbsp;Qian Zhang ,&nbsp;Kun Gao ,&nbsp;Augusto Marcelli ,&nbsp;Zhipan Zhang","doi":"10.1016/j.apmate.2025.100278","DOIUrl":null,"url":null,"abstract":"<div><div>Developing advanced secondary batteries with low cost and high safety has attracted increasing research interests across the world. In particular, the aqueous zinc-ion battery (AZIB) has been regarded as a promising candidate owing to the high abundance and capacity of Zn metal. Currently, manganese-based and vanadium-based oxides are most common choices for cathode materials used in AZIBs, but they unfortunately show a moderate cell voltage and limited rate performance induced by slow intercalation-extraction kinetics of Zn<sup>2+</sup> ions. To address these issues, alternative cathode systems with tunable redox potentials and intrinsic fast kinetics have been exploited. In the past few years, conversion-type cathodes of I<sub>2</sub> and S have become the most illustrative examples to match or even surpass the performance of conventional metal oxide cathodes in AZIBs. Herein, we sum up most recent progress in conversion-type cathodes and focus on novel ideas and concepts in designing/modifying cathodes for AZIBs with high voltage/capacity. Additionally, potential directions and future efforts are tentatively proposed for further development of conversion-type cathodes, aiming to speed up the practical application of AZIBs.</div></div>","PeriodicalId":7283,"journal":{"name":"Advanced Powder Materials","volume":"4 2","pages":"Article 100278"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Powder Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772834X25000144","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Developing advanced secondary batteries with low cost and high safety has attracted increasing research interests across the world. In particular, the aqueous zinc-ion battery (AZIB) has been regarded as a promising candidate owing to the high abundance and capacity of Zn metal. Currently, manganese-based and vanadium-based oxides are most common choices for cathode materials used in AZIBs, but they unfortunately show a moderate cell voltage and limited rate performance induced by slow intercalation-extraction kinetics of Zn2+ ions. To address these issues, alternative cathode systems with tunable redox potentials and intrinsic fast kinetics have been exploited. In the past few years, conversion-type cathodes of I2 and S have become the most illustrative examples to match or even surpass the performance of conventional metal oxide cathodes in AZIBs. Herein, we sum up most recent progress in conversion-type cathodes and focus on novel ideas and concepts in designing/modifying cathodes for AZIBs with high voltage/capacity. Additionally, potential directions and future efforts are tentatively proposed for further development of conversion-type cathodes, aiming to speed up the practical application of AZIBs.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
33.30
自引率
0.00%
发文量
0
期刊最新文献
Recent progress in aqueous zinc-ion batteries based on conversion-type cathodes Superb impact resistance of nano-precipitation-strengthened high-entropy alloys Stereoisomeric engineering mediated zinc metal electrodeposition: Critical balance of solvation and adsorption capability Advancements in perovskites for solar cell commercialization: A review Multicolor chiral perovskite nanowire films with strong and tailorable circularly polarized luminescence
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1