Md Nahid Hasan , Sharat Paul , Taylor E. Greenwood , Robert G. Parker , Yong Lin Kong , Pai Wang
{"title":"Harmonically induced shape morphing of bistable buckled beam with static bias","authors":"Md Nahid Hasan , Sharat Paul , Taylor E. Greenwood , Robert G. Parker , Yong Lin Kong , Pai Wang","doi":"10.1016/j.eml.2025.102299","DOIUrl":null,"url":null,"abstract":"<div><div>We investigate the effect of a constant static bias force on the dynamically induced shape morphing of a pre-buckled bistable beam, focusing on the beam’s ability to change its vibration to be near different stable states under harmonic excitation. Our study explores four categories of oscillatory motions: switching, reverting, vacillating, and intra-well in the parameter space. We aim to achieve transitions between stable states of the pre-buckled bistable beam with minimal excitation amplitude. Our findings demonstrate the synergistic effects between dynamic excitation and static bias force, showing a broadening of the non-fractal region for switching behavior (i.e., switching from the first stable state to the second stable state) in the parameter space. This study advances the understanding of the dynamics of key structural components for multi-stable mechanical metamaterials, offering new possibilities for novel designs in adaptive applications.</div></div>","PeriodicalId":56247,"journal":{"name":"Extreme Mechanics Letters","volume":"76 ","pages":"Article 102299"},"PeriodicalIF":4.3000,"publicationDate":"2025-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Extreme Mechanics Letters","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352431625000112","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We investigate the effect of a constant static bias force on the dynamically induced shape morphing of a pre-buckled bistable beam, focusing on the beam’s ability to change its vibration to be near different stable states under harmonic excitation. Our study explores four categories of oscillatory motions: switching, reverting, vacillating, and intra-well in the parameter space. We aim to achieve transitions between stable states of the pre-buckled bistable beam with minimal excitation amplitude. Our findings demonstrate the synergistic effects between dynamic excitation and static bias force, showing a broadening of the non-fractal region for switching behavior (i.e., switching from the first stable state to the second stable state) in the parameter space. This study advances the understanding of the dynamics of key structural components for multi-stable mechanical metamaterials, offering new possibilities for novel designs in adaptive applications.
期刊介绍:
Extreme Mechanics Letters (EML) enables rapid communication of research that highlights the role of mechanics in multi-disciplinary areas across materials science, physics, chemistry, biology, medicine and engineering. Emphasis is on the impact, depth and originality of new concepts, methods and observations at the forefront of applied sciences.