Generalized engineering equations of heat-transfer performance for twisted heat exchanger with slurries from biogas plants by using Machine learning driven by mechanism and data
Yan Liu , Shanshan Wang , Liwen Mu , Mikael Risberg , Urban Jansson , Jiahua Zhu , Xiaohua Lu , Xiaoyan Ji , Jingjing Chen
{"title":"Generalized engineering equations of heat-transfer performance for twisted heat exchanger with slurries from biogas plants by using Machine learning driven by mechanism and data","authors":"Yan Liu , Shanshan Wang , Liwen Mu , Mikael Risberg , Urban Jansson , Jiahua Zhu , Xiaohua Lu , Xiaoyan Ji , Jingjing Chen","doi":"10.1016/j.applthermaleng.2025.126046","DOIUrl":null,"url":null,"abstract":"<div><div>The development of generalized engineering equations of the heat-transfer performance in enhanced geometries for different slurries is crucial for practical applications but difficult owing to the complex rheological properties. In the present study, a method of computational-fluid-dynamics-data-driven machine learning was proposed to establish generalized engineering equations in a novel twisted geometry for multiple slurries with a single substrate. The applicability of the equations for a mixed slurry was determined by comparing the predictions and computational fluid dynamics simulations. It was found that the established equations considering the key parameter–effective shear rate show a high accuracy with an average relative deviation of 17.3 % for single-substrate slurries with the scope of viscosities and flow behavior index ranging from 0.057-93.96 Pa·s and 0.257–0.579, respectively. Moreover, the generalized engineering equations show an average relative deviation of 12.4 % in prediction for the mixed slurry possessing the temperature- and shearing-sensitive rheological behavior. The generalized engineering equations quantitatively reveal the positive effect of non-Newtonian behavior on the heat-transfer enhancement of THT for different slurries. Based on this mechanism, a mixed slurry is recommend with energy-conservation of 60.00 GW·h/year for a full-scale biogas plant.</div></div>","PeriodicalId":8201,"journal":{"name":"Applied Thermal Engineering","volume":"269 ","pages":"Article 126046"},"PeriodicalIF":6.1000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Thermal Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359431125006374","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
The development of generalized engineering equations of the heat-transfer performance in enhanced geometries for different slurries is crucial for practical applications but difficult owing to the complex rheological properties. In the present study, a method of computational-fluid-dynamics-data-driven machine learning was proposed to establish generalized engineering equations in a novel twisted geometry for multiple slurries with a single substrate. The applicability of the equations for a mixed slurry was determined by comparing the predictions and computational fluid dynamics simulations. It was found that the established equations considering the key parameter–effective shear rate show a high accuracy with an average relative deviation of 17.3 % for single-substrate slurries with the scope of viscosities and flow behavior index ranging from 0.057-93.96 Pa·s and 0.257–0.579, respectively. Moreover, the generalized engineering equations show an average relative deviation of 12.4 % in prediction for the mixed slurry possessing the temperature- and shearing-sensitive rheological behavior. The generalized engineering equations quantitatively reveal the positive effect of non-Newtonian behavior on the heat-transfer enhancement of THT for different slurries. Based on this mechanism, a mixed slurry is recommend with energy-conservation of 60.00 GW·h/year for a full-scale biogas plant.
期刊介绍:
Applied Thermal Engineering disseminates novel research related to the design, development and demonstration of components, devices, equipment, technologies and systems involving thermal processes for the production, storage, utilization and conservation of energy, with a focus on engineering application.
The journal publishes high-quality and high-impact Original Research Articles, Review Articles, Short Communications and Letters to the Editor on cutting-edge innovations in research, and recent advances or issues of interest to the thermal engineering community.