Thermosensitive hydrogel loaded with nanozyme and BPTES for enhanced tumor catalytic therapy

IF 5.4 2区 医学 Q1 BIOPHYSICS Colloids and Surfaces B: Biointerfaces Pub Date : 2025-02-27 DOI:10.1016/j.colsurfb.2025.114600
Xiangyun Lv , Zeming Liu , Pengyuan Qi , Kang Chen
{"title":"Thermosensitive hydrogel loaded with nanozyme and BPTES for enhanced tumor catalytic therapy","authors":"Xiangyun Lv ,&nbsp;Zeming Liu ,&nbsp;Pengyuan Qi ,&nbsp;Kang Chen","doi":"10.1016/j.colsurfb.2025.114600","DOIUrl":null,"url":null,"abstract":"<div><div>Single-atom enzymes (SAZ) show great promise in cancer therapy, particularly chemodynamic therapy, due to their high catalytic activity. They can increase reactive oxygen species (ROS) in tumor cells, causing cell damage and death. However, glutathione (GSH) in tumors can neutralize ROS, reducing SAZ effectiveness. Lowering GSH levels can enhance the effectiveness of SAZ in killing tumor cells, and inhibiting its synthesis at the source might be a promising approach. Glutaminase (GLS1) inhibitors like BPTES can reduce GSH by disrupting glutamine metabolism. This study develops a thermosensitive hydrogel with Fe-based SAZ and BPTES. Upon infrared laser irradiation, the hydrogel releases FeSAZ and BPTES into tumor cells. FeSAZ generates ▪OH from H<sub>2</sub>O<sub>2</sub>, while BPTES reduces glutathione (GSH) synthesis in tumor cells, weakening their defenses and enhancing the cytotoxic effects of ▪OH. This combined strategy shows strong potential for effective tumor suppression. Our strategy provides new insights into cancer treatments, potentially offering a more effective therapeutic options for patients.</div></div>","PeriodicalId":279,"journal":{"name":"Colloids and Surfaces B: Biointerfaces","volume":"251 ","pages":"Article 114600"},"PeriodicalIF":5.4000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloids and Surfaces B: Biointerfaces","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927776525001079","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Single-atom enzymes (SAZ) show great promise in cancer therapy, particularly chemodynamic therapy, due to their high catalytic activity. They can increase reactive oxygen species (ROS) in tumor cells, causing cell damage and death. However, glutathione (GSH) in tumors can neutralize ROS, reducing SAZ effectiveness. Lowering GSH levels can enhance the effectiveness of SAZ in killing tumor cells, and inhibiting its synthesis at the source might be a promising approach. Glutaminase (GLS1) inhibitors like BPTES can reduce GSH by disrupting glutamine metabolism. This study develops a thermosensitive hydrogel with Fe-based SAZ and BPTES. Upon infrared laser irradiation, the hydrogel releases FeSAZ and BPTES into tumor cells. FeSAZ generates ▪OH from H2O2, while BPTES reduces glutathione (GSH) synthesis in tumor cells, weakening their defenses and enhancing the cytotoxic effects of ▪OH. This combined strategy shows strong potential for effective tumor suppression. Our strategy provides new insights into cancer treatments, potentially offering a more effective therapeutic options for patients.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Colloids and Surfaces B: Biointerfaces
Colloids and Surfaces B: Biointerfaces 生物-材料科学:生物材料
CiteScore
11.10
自引率
3.40%
发文量
730
审稿时长
42 days
期刊介绍: Colloids and Surfaces B: Biointerfaces is an international journal devoted to fundamental and applied research on colloid and interfacial phenomena in relation to systems of biological origin, having particular relevance to the medical, pharmaceutical, biotechnological, food and cosmetic fields. Submissions that: (1) deal solely with biological phenomena and do not describe the physico-chemical or colloid-chemical background and/or mechanism of the phenomena, and (2) deal solely with colloid/interfacial phenomena and do not have appropriate biological content or relevance, are outside the scope of the journal and will not be considered for publication. The journal publishes regular research papers, reviews, short communications and invited perspective articles, called BioInterface Perspectives. The BioInterface Perspective provide researchers the opportunity to review their own work, as well as provide insight into the work of others that inspired and influenced the author. Regular articles should have a maximum total length of 6,000 words. In addition, a (combined) maximum of 8 normal-sized figures and/or tables is allowed (so for instance 3 tables and 5 figures). For multiple-panel figures each set of two panels equates to one figure. Short communications should not exceed half of the above. It is required to give on the article cover page a short statistical summary of the article listing the total number of words and tables/figures.
期刊最新文献
Thermosensitive hydrogel loaded with nanozyme and BPTES for enhanced tumor catalytic therapy Gardeniae Fructus derived natural small molecule-based carbon dots promoting activation and aggregation of platelets to accelerate hemostasis Electroacupuncture as a promising therapeutic strategy for doxorubicin-induced heart failure: Insights into the PI3K/AKT/mTOR/ULK1 and AMPK /mTOR /ULK1 pathways Screening lipid nanoparticles using DNA barcoding and qPCR Biomaterial-associated infections: Their development, characterization, prevention and treatment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1