Evaluation of ultrasonic energy and temperature on the structural, morphological, and magnetic properties of Fe3O4 nanoparticles

IF 3.4 3区 化学 Q2 CHEMISTRY, INORGANIC & NUCLEAR Solid State Sciences Pub Date : 2025-02-25 DOI:10.1016/j.solidstatesciences.2025.107880
M.C. Vega Sosa , I.M. Saavedra Gaona , C.A. Parra Vargas , R.J. Rincón , D. Llamosa Pérez
{"title":"Evaluation of ultrasonic energy and temperature on the structural, morphological, and magnetic properties of Fe3O4 nanoparticles","authors":"M.C. Vega Sosa ,&nbsp;I.M. Saavedra Gaona ,&nbsp;C.A. Parra Vargas ,&nbsp;R.J. Rincón ,&nbsp;D. Llamosa Pérez","doi":"10.1016/j.solidstatesciences.2025.107880","DOIUrl":null,"url":null,"abstract":"<div><div>Iron oxide nanoparticles currently have multiple technological, medical, and environmental applications, making an efficient and sustainable production process necessary. This work systematically investigates the ultrasonic energy and reaction temperature in synthesizing Fe<sub>3</sub>O<sub>4</sub> nanoparticles on their structural, morphological, and magnetic properties. The properties were characterized using X-ray diffraction (XRD), Fourier transform (FTIR), X-ray photoemission spectroscopy (XPS), transmission electron microscopy (TEM), selected area electron diffraction (SAED), and vibrating sample magnetometry (VSM). The results show that the synthesis process parameters are crucial in forming Fe<sub>3</sub>O<sub>4</sub> nanoparticles with superparamagnetic properties. It was found that higher temperatures or ultrasonic energy led to an increase in grain size, ranging from 8 to 20 nm. Consequently, the variation of these parameters significantly impacts the magnetic properties of the nanoparticles. For instance, small coercive fields (0.51 Oe) were observed in samples with a grain size of 8.40 (2) nm. These relevant findings could play a key role in developing future industrial applications.</div></div>","PeriodicalId":432,"journal":{"name":"Solid State Sciences","volume":"162 ","pages":"Article 107880"},"PeriodicalIF":3.4000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid State Sciences","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1293255825000585","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

Iron oxide nanoparticles currently have multiple technological, medical, and environmental applications, making an efficient and sustainable production process necessary. This work systematically investigates the ultrasonic energy and reaction temperature in synthesizing Fe3O4 nanoparticles on their structural, morphological, and magnetic properties. The properties were characterized using X-ray diffraction (XRD), Fourier transform (FTIR), X-ray photoemission spectroscopy (XPS), transmission electron microscopy (TEM), selected area electron diffraction (SAED), and vibrating sample magnetometry (VSM). The results show that the synthesis process parameters are crucial in forming Fe3O4 nanoparticles with superparamagnetic properties. It was found that higher temperatures or ultrasonic energy led to an increase in grain size, ranging from 8 to 20 nm. Consequently, the variation of these parameters significantly impacts the magnetic properties of the nanoparticles. For instance, small coercive fields (0.51 Oe) were observed in samples with a grain size of 8.40 (2) nm. These relevant findings could play a key role in developing future industrial applications.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
氧化铁纳米粒子目前在技术、医疗和环境方面有多种应用,因此需要一种高效、可持续的生产工艺。这项工作系统地研究了合成 Fe3O4 纳米粒子时超声波能量和反应温度对其结构、形态和磁性能的影响。利用 X 射线衍射 (XRD)、傅立叶变换 (FTIR)、X 射线光发射光谱 (XPS)、透射电子显微镜 (TEM)、选区电子衍射 (SAED) 和振动样品磁力计 (VSM) 对这些特性进行了表征。结果表明,合成工艺参数对形成具有超顺磁性能的 Fe3O4 纳米粒子至关重要。研究发现,温度或超声波能量越高,晶粒尺寸越大,从 8 纳米到 20 纳米不等。因此,这些参数的变化对纳米粒子的磁性能有很大影响。例如,在晶粒尺寸为 8.40 (2) nm 的样品中观察到了较小的矫顽力场(0.51 Oe)。这些相关发现可在开发未来的工业应用中发挥关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Solid State Sciences
Solid State Sciences 化学-无机化学与核化学
CiteScore
6.60
自引率
2.90%
发文量
214
审稿时长
27 days
期刊介绍: Solid State Sciences is the journal for researchers from the broad solid state chemistry and physics community. It publishes key articles on all aspects of solid state synthesis, structure-property relationships, theory and functionalities, in relation with experiments. Key topics for stand-alone papers and special issues: -Novel ways of synthesis, inorganic functional materials, including porous and glassy materials, hybrid organic-inorganic compounds and nanomaterials -Physical properties, emphasizing but not limited to the electrical, magnetical and optical features -Materials related to information technology and energy and environmental sciences. The journal publishes feature articles from experts in the field upon invitation. Solid State Sciences - your gateway to energy-related materials.
期刊最新文献
Synthesis and characterization of P-doped g-C3N4/CuBi2O4 as a new heterogeneous nanocomposite for photocatalytic reduction of nitroaromatic compounds Insights on the electrooxidation of formaldehyde over bimetallic Co2V2O7 nanorod and its implication towards water electrolysis Thermoelectric properties of Zn/Sc codoped GeTe prepared by melt-spinning method Anchoring of liquid crystal molecules on multi-walled carbon nanotubes and their effects on enhanced photoluminescence dynamics, fluorescence decay and distinctive electrical properties Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1