A simple simultaneous envelope/system optimization for energy efficiency improvement in near-zero energy buildings

IF 7.1 Q1 ENERGY & FUELS Energy Conversion and Management-X Pub Date : 2025-02-28 DOI:10.1016/j.ecmx.2025.100951
Martín Muñoz-Salcedo , José L. Saquinaula-Brito , Jhonny Ortíz-Mata , Fernando Peci-López
{"title":"A simple simultaneous envelope/system optimization for energy efficiency improvement in near-zero energy buildings","authors":"Martín Muñoz-Salcedo ,&nbsp;José L. Saquinaula-Brito ,&nbsp;Jhonny Ortíz-Mata ,&nbsp;Fernando Peci-López","doi":"10.1016/j.ecmx.2025.100951","DOIUrl":null,"url":null,"abstract":"<div><div>This study develops a simple yet innovative framework for the simultaneous long-term optimization of building envelope strategies and energy systems in near-zero energy buildings (nZEB). The proposed framework evaluates the energy and economic performance of four envelope strategies—phase change materials (PCM), aerogel insulation, green walls, and awnings—integrated into a distributed generation mix comprising photovoltaic (PV) systems, wind turbines, battery storage, and grid support. The main objective is to analyze the influence of envelope solutions within the distributed generation mix to meet the building’s energy demand. The model is formulated as a mixed-integer disciplined convex program (MIDCP) and solved using the CVXR package in R, minimizing the total cost of envelope and energy systems over a 30-year period. The cost function is based on the CEN EN 15459 standard. Model validation is performed using real experimental data from a building located in Ecuador’s coastal region, characterized by a hot and humid climate. Its robustness is further verified through a sensitivity analysis that explores economic parameter variations and long-term climate change scenarios, combining EnergyPlus simulations with eplusr in R. Results indicate that the awning-based envelope strategy achieves the best performance under current conditions, with energy savings of 12–15 kW/year and a payback period of 8 years. For long-term economic viability, investment cost reductions of 73 %, 60 %, and 71 % are necessary for PCM, aerogel, and green wall solutions, respectively. This integrated optimization model provides a practical decision-making tool for evaluating cost-effectiveness and energy performance under evolving market and climate conditions.</div></div>","PeriodicalId":37131,"journal":{"name":"Energy Conversion and Management-X","volume":"26 ","pages":"Article 100951"},"PeriodicalIF":7.1000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Conversion and Management-X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590174525000832","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

This study develops a simple yet innovative framework for the simultaneous long-term optimization of building envelope strategies and energy systems in near-zero energy buildings (nZEB). The proposed framework evaluates the energy and economic performance of four envelope strategies—phase change materials (PCM), aerogel insulation, green walls, and awnings—integrated into a distributed generation mix comprising photovoltaic (PV) systems, wind turbines, battery storage, and grid support. The main objective is to analyze the influence of envelope solutions within the distributed generation mix to meet the building’s energy demand. The model is formulated as a mixed-integer disciplined convex program (MIDCP) and solved using the CVXR package in R, minimizing the total cost of envelope and energy systems over a 30-year period. The cost function is based on the CEN EN 15459 standard. Model validation is performed using real experimental data from a building located in Ecuador’s coastal region, characterized by a hot and humid climate. Its robustness is further verified through a sensitivity analysis that explores economic parameter variations and long-term climate change scenarios, combining EnergyPlus simulations with eplusr in R. Results indicate that the awning-based envelope strategy achieves the best performance under current conditions, with energy savings of 12–15 kW/year and a payback period of 8 years. For long-term economic viability, investment cost reductions of 73 %, 60 %, and 71 % are necessary for PCM, aerogel, and green wall solutions, respectively. This integrated optimization model provides a practical decision-making tool for evaluating cost-effectiveness and energy performance under evolving market and climate conditions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.80
自引率
3.20%
发文量
180
审稿时长
58 days
期刊介绍: Energy Conversion and Management: X is the open access extension of the reputable journal Energy Conversion and Management, serving as a platform for interdisciplinary research on a wide array of critical energy subjects. The journal is dedicated to publishing original contributions and in-depth technical review articles that present groundbreaking research on topics spanning energy generation, utilization, conversion, storage, transmission, conservation, management, and sustainability. The scope of Energy Conversion and Management: X encompasses various forms of energy, including mechanical, thermal, nuclear, chemical, electromagnetic, magnetic, and electric energy. It addresses all known energy resources, highlighting both conventional sources like fossil fuels and nuclear power, as well as renewable resources such as solar, biomass, hydro, wind, geothermal, and ocean energy.
期刊最新文献
Advancements in photovoltaic technology: A comprehensive review of recent advances and future prospects A simple simultaneous envelope/system optimization for energy efficiency improvement in near-zero energy buildings Agricultural tractor electrical propulsion concept Comparative assessment of single axis manual solar PV trackers: A case study for agricultural applications Optimization of combined electricity generation and cooling load reduction by incorporating roof top photovoltaic module: An approach to energy consumption reduction in a hospital building
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1