{"title":"Exploring the dark annihilation: Multi-component asymmetric and symmetric dark matter","authors":"Amit Dutta Banik","doi":"10.1016/j.nuclphysb.2025.116855","DOIUrl":null,"url":null,"abstract":"<div><div>The article describes Boltzmann equations for a potential case of multi-particle dark matter with symmetric and asymmetric dark matter components in a model-independent approach. We focus on the specific scenario where one of the DM candidates remains completely invisible, having only hidden sector interactions with the other dark matter constituent referred to as “dark annihilation”. The possible effect of non-standard expansion of the universe on the dark matter abundance is also taken into account.</div></div>","PeriodicalId":54712,"journal":{"name":"Nuclear Physics B","volume":"1013 ","pages":"Article 116855"},"PeriodicalIF":2.5000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Physics B","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0550321325000641","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
引用次数: 0
Abstract
The article describes Boltzmann equations for a potential case of multi-particle dark matter with symmetric and asymmetric dark matter components in a model-independent approach. We focus on the specific scenario where one of the DM candidates remains completely invisible, having only hidden sector interactions with the other dark matter constituent referred to as “dark annihilation”. The possible effect of non-standard expansion of the universe on the dark matter abundance is also taken into account.
期刊介绍:
Nuclear Physics B focuses on the domain of high energy physics, quantum field theory, statistical systems, and mathematical physics, and includes four main sections: high energy physics - phenomenology, high energy physics - theory, high energy physics - experiment, and quantum field theory, statistical systems, and mathematical physics. The emphasis is on original research papers (Frontiers Articles or Full Length Articles), but Review Articles are also welcome.