Optimizing the Mechanics of a Variable-Stiffness Orthosis With Energy Recycling to Mitigate Foot Drop

IF 3.4 Q2 ENGINEERING, BIOMEDICAL IEEE transactions on medical robotics and bionics Pub Date : 2024-11-25 DOI:10.1109/TMRB.2024.3505304
Emily A. Bywater;Nikko Van Crey;Elliott J. Rouse
{"title":"Optimizing the Mechanics of a Variable-Stiffness Orthosis With Energy Recycling to Mitigate Foot Drop","authors":"Emily A. Bywater;Nikko Van Crey;Elliott J. Rouse","doi":"10.1109/TMRB.2024.3505304","DOIUrl":null,"url":null,"abstract":"In ankle-foot orthosis development, it is challenging to both specify the appropriate ankle mechanics and design systems that can physically render them. Recently, a new ankle-foot orthosis-the Variable Stiffness Orthosis (VSO)–was introduced to allow customization of the shape of the joint’s torque-angle relationship via a cam-based transmission. A module in the VSO permits switching between two coupled torque-angle relationships at desired kinematic transitions. This module decouples energy storage and return (DESR), enabling new functionality, including varying the ankle’s equilibrium position and exchanging energy between gait phases. However, the torque-angle relationships are defined by many parameters and subject to substantial constraints. We developed an optimization framework to design two versions of the DESR module to address foot drop. The angle module was designed to maximize swing ankle angle, and the energy module was designed to maximize energy recycled from early stance phase to augment push off. We validated the results of the optimization with brute-force searching and empirically tested the DESR mechanics in a rotary dynamometer. The angle module facilitated swing angles of up to 0.63° dorsiflexion, while simultaneously permitting a plantarflexed standing angle, and the energy module recycled up to 1.84 J.","PeriodicalId":73318,"journal":{"name":"IEEE transactions on medical robotics and bionics","volume":"7 1","pages":"130-140"},"PeriodicalIF":3.4000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on medical robotics and bionics","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10766907/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In ankle-foot orthosis development, it is challenging to both specify the appropriate ankle mechanics and design systems that can physically render them. Recently, a new ankle-foot orthosis-the Variable Stiffness Orthosis (VSO)–was introduced to allow customization of the shape of the joint’s torque-angle relationship via a cam-based transmission. A module in the VSO permits switching between two coupled torque-angle relationships at desired kinematic transitions. This module decouples energy storage and return (DESR), enabling new functionality, including varying the ankle’s equilibrium position and exchanging energy between gait phases. However, the torque-angle relationships are defined by many parameters and subject to substantial constraints. We developed an optimization framework to design two versions of the DESR module to address foot drop. The angle module was designed to maximize swing ankle angle, and the energy module was designed to maximize energy recycled from early stance phase to augment push off. We validated the results of the optimization with brute-force searching and empirically tested the DESR mechanics in a rotary dynamometer. The angle module facilitated swing angles of up to 0.63° dorsiflexion, while simultaneously permitting a plantarflexed standing angle, and the energy module recycled up to 1.84 J.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用能量回收优化可变刚度矫形器的机械结构,减轻足下垂现象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.80
自引率
0.00%
发文量
0
期刊最新文献
Table of Contents IEEE Transactions on Medical Robotics and Bionics Information for Authors IEEE Transactions on Medical Robotics and Bionics Society Information Guest Editorial BioRob2024 IEEE Transactions on Medical Robotics and Bionics Publication Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1