Assistive Force Myography Controlled Exoglove

IF 3.4 Q2 ENGINEERING, BIOMEDICAL IEEE transactions on medical robotics and bionics Pub Date : 2024-11-21 DOI:10.1109/TMRB.2024.3503925
Francesco Missiroli;Francesco Ferrazzi;Enrica Tricomi;Maura Casadio;Lorenzo Masia
{"title":"Assistive Force Myography Controlled Exoglove","authors":"Francesco Missiroli;Francesco Ferrazzi;Enrica Tricomi;Maura Casadio;Lorenzo Masia","doi":"10.1109/TMRB.2024.3503925","DOIUrl":null,"url":null,"abstract":"Wearable robotic devices like exosuits address mobility challenges in musculoskeletal disorders. While exoskeletons mainly aid in rehabilitation routines, lightweight exosuits provide a cost-effective solution, empowering individuals with motor disabilities in performing daily activities. Characterized by discreet, flexible designs, exosuits seamlessly integrate into daily routines, offering unobtrusive support and enhancing functional independence for those with mobility impairments. This research proposes a novel exoglove controlled via force-myography to restore grasping motor ability in individuals with partial loss of hand-motor function but retaining residual wrist movement. The exosuit aims to provide a tailored solution, offering cost-effective advantages over traditional exoskeletons. The proposed exoglove uses force myography to translate the user’s wrist movements into a motor command to assist grasping. Such an approach could ensure reliable and consistent control for people with partial or total loss of finger motion. With more than 89% accuracy in wrist movement classification, it can operate with minimal effort, moreover, the exoglove preserves natural finger motion, demonstrated by negligible muscle activity variations.","PeriodicalId":73318,"journal":{"name":"IEEE transactions on medical robotics and bionics","volume":"7 1","pages":"27-32"},"PeriodicalIF":3.4000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on medical robotics and bionics","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10759768/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Wearable robotic devices like exosuits address mobility challenges in musculoskeletal disorders. While exoskeletons mainly aid in rehabilitation routines, lightweight exosuits provide a cost-effective solution, empowering individuals with motor disabilities in performing daily activities. Characterized by discreet, flexible designs, exosuits seamlessly integrate into daily routines, offering unobtrusive support and enhancing functional independence for those with mobility impairments. This research proposes a novel exoglove controlled via force-myography to restore grasping motor ability in individuals with partial loss of hand-motor function but retaining residual wrist movement. The exosuit aims to provide a tailored solution, offering cost-effective advantages over traditional exoskeletons. The proposed exoglove uses force myography to translate the user’s wrist movements into a motor command to assist grasping. Such an approach could ensure reliable and consistent control for people with partial or total loss of finger motion. With more than 89% accuracy in wrist movement classification, it can operate with minimal effort, moreover, the exoglove preserves natural finger motion, demonstrated by negligible muscle activity variations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
辅助力肌电图控制外手套
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.80
自引率
0.00%
发文量
0
期刊最新文献
Table of Contents IEEE Transactions on Medical Robotics and Bionics Information for Authors IEEE Transactions on Medical Robotics and Bionics Society Information Guest Editorial BioRob2024 IEEE Transactions on Medical Robotics and Bionics Publication Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1