{"title":"Whale Algorithm for Schedule Optimization of Construction Projects Employing Building Information Modeling","authors":"S. M. Golmaei, J. Vahidi, Morteza Jamshidi","doi":"10.1002/eng2.70022","DOIUrl":null,"url":null,"abstract":"<p>This study introduces a new approach by applying the Whale Optimization Algorithm (WOA) to create construction schedules using geometric data from Building Information Modeling (BIM). The algorithm utilizes 3D model information to establish stability criteria, which are organized in a Directed Design Structure Matrix (DSM). These criteria are integrated into the WOA Fitness function to enhance the constructability of schedules, where each schedule is symbolized as a unique whale. Through iterative WOA computations, the approach consistently achieves maximum constructability scores starting from randomly generated schedules, affirming the efficacy of this method. The results reveal that the proposed algorithm effectively produced fully executable project schedules from diverse inputs. Despite variations in computational times due to different input parameters, the experiments verified the consistent generation of schedules that are 100% executable.</p>","PeriodicalId":72922,"journal":{"name":"Engineering reports : open access","volume":"7 3","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eng2.70022","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering reports : open access","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eng2.70022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
This study introduces a new approach by applying the Whale Optimization Algorithm (WOA) to create construction schedules using geometric data from Building Information Modeling (BIM). The algorithm utilizes 3D model information to establish stability criteria, which are organized in a Directed Design Structure Matrix (DSM). These criteria are integrated into the WOA Fitness function to enhance the constructability of schedules, where each schedule is symbolized as a unique whale. Through iterative WOA computations, the approach consistently achieves maximum constructability scores starting from randomly generated schedules, affirming the efficacy of this method. The results reveal that the proposed algorithm effectively produced fully executable project schedules from diverse inputs. Despite variations in computational times due to different input parameters, the experiments verified the consistent generation of schedules that are 100% executable.