Hongbo Zhang, Giovanni Crupi, Zhen Liao, Jialin Cai
{"title":"Application of Spoof Surface Plasmon Polaritons for the Design of Sequential Load Modulated Balanced Amplifier","authors":"Hongbo Zhang, Giovanni Crupi, Zhen Liao, Jialin Cai","doi":"10.1002/jnm.70029","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Spoof surface plasmon polariton (SSPP) controls and manipulates electromagnetic waves in the microwave frequency range through ultrathin corrugated metallic strips, making it suitable for use with microwave devices. In the current state of research, SSPPs are primarily used to design passive circuits and single-device power amplifiers (PAs). This study combines the SSPP design methodology with sequential load modulated balanced amplifiers (SLMBA) topology to develop a high back-off (BO) efficiency load-modulated PA. By using the proposed SSPP theory and method, input and output matching networks based on slow-wave metamaterials are designed for balanced amplifiers (BAs) and carrier amplifiers (CAs) in the SLMBA. The designed metamaterial-based SLMBA was fabricated and demonstrated to have a saturated output power of 43 dBm, a BO range of 10 dB, and a BO efficiency maintained above 56.5% within the frequency range of 1.8–2.1 GHz, with a size of 72 mm × 101 mm, which represents a 38% reduction in size when compared to traditional transmission-line-based SLMBAs. A 20-MHz 5G NR signal has been used to implement digital pre-distortion (DPD) and enhance SLMBA linearity.</p>\n </div>","PeriodicalId":50300,"journal":{"name":"International Journal of Numerical Modelling-Electronic Networks Devices and Fields","volume":"38 2","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Numerical Modelling-Electronic Networks Devices and Fields","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jnm.70029","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Spoof surface plasmon polariton (SSPP) controls and manipulates electromagnetic waves in the microwave frequency range through ultrathin corrugated metallic strips, making it suitable for use with microwave devices. In the current state of research, SSPPs are primarily used to design passive circuits and single-device power amplifiers (PAs). This study combines the SSPP design methodology with sequential load modulated balanced amplifiers (SLMBA) topology to develop a high back-off (BO) efficiency load-modulated PA. By using the proposed SSPP theory and method, input and output matching networks based on slow-wave metamaterials are designed for balanced amplifiers (BAs) and carrier amplifiers (CAs) in the SLMBA. The designed metamaterial-based SLMBA was fabricated and demonstrated to have a saturated output power of 43 dBm, a BO range of 10 dB, and a BO efficiency maintained above 56.5% within the frequency range of 1.8–2.1 GHz, with a size of 72 mm × 101 mm, which represents a 38% reduction in size when compared to traditional transmission-line-based SLMBAs. A 20-MHz 5G NR signal has been used to implement digital pre-distortion (DPD) and enhance SLMBA linearity.
期刊介绍:
Prediction through modelling forms the basis of engineering design. The computational power at the fingertips of the professional engineer is increasing enormously and techniques for computer simulation are changing rapidly. Engineers need models which relate to their design area and which are adaptable to new design concepts. They also need efficient and friendly ways of presenting, viewing and transmitting the data associated with their models.
The International Journal of Numerical Modelling: Electronic Networks, Devices and Fields provides a communication vehicle for numerical modelling methods and data preparation methods associated with electrical and electronic circuits and fields. It concentrates on numerical modelling rather than abstract numerical mathematics.
Contributions on numerical modelling will cover the entire subject of electrical and electronic engineering. They will range from electrical distribution networks to integrated circuits on VLSI design, and from static electric and magnetic fields through microwaves to optical design. They will also include the use of electrical networks as a modelling medium.