Application of Spoof Surface Plasmon Polaritons for the Design of Sequential Load Modulated Balanced Amplifier

IF 1.6 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC International Journal of Numerical Modelling-Electronic Networks Devices and Fields Pub Date : 2025-03-03 DOI:10.1002/jnm.70029
Hongbo Zhang, Giovanni Crupi, Zhen Liao, Jialin Cai
{"title":"Application of Spoof Surface Plasmon Polaritons for the Design of Sequential Load Modulated Balanced Amplifier","authors":"Hongbo Zhang,&nbsp;Giovanni Crupi,&nbsp;Zhen Liao,&nbsp;Jialin Cai","doi":"10.1002/jnm.70029","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Spoof surface plasmon polariton (SSPP) controls and manipulates electromagnetic waves in the microwave frequency range through ultrathin corrugated metallic strips, making it suitable for use with microwave devices. In the current state of research, SSPPs are primarily used to design passive circuits and single-device power amplifiers (PAs). This study combines the SSPP design methodology with sequential load modulated balanced amplifiers (SLMBA) topology to develop a high back-off (BO) efficiency load-modulated PA. By using the proposed SSPP theory and method, input and output matching networks based on slow-wave metamaterials are designed for balanced amplifiers (BAs) and carrier amplifiers (CAs) in the SLMBA. The designed metamaterial-based SLMBA was fabricated and demonstrated to have a saturated output power of 43 dBm, a BO range of 10 dB, and a BO efficiency maintained above 56.5% within the frequency range of 1.8–2.1 GHz, with a size of 72 mm × 101 mm, which represents a 38% reduction in size when compared to traditional transmission-line-based SLMBAs. A 20-MHz 5G NR signal has been used to implement digital pre-distortion (DPD) and enhance SLMBA linearity.</p>\n </div>","PeriodicalId":50300,"journal":{"name":"International Journal of Numerical Modelling-Electronic Networks Devices and Fields","volume":"38 2","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Numerical Modelling-Electronic Networks Devices and Fields","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jnm.70029","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Spoof surface plasmon polariton (SSPP) controls and manipulates electromagnetic waves in the microwave frequency range through ultrathin corrugated metallic strips, making it suitable for use with microwave devices. In the current state of research, SSPPs are primarily used to design passive circuits and single-device power amplifiers (PAs). This study combines the SSPP design methodology with sequential load modulated balanced amplifiers (SLMBA) topology to develop a high back-off (BO) efficiency load-modulated PA. By using the proposed SSPP theory and method, input and output matching networks based on slow-wave metamaterials are designed for balanced amplifiers (BAs) and carrier amplifiers (CAs) in the SLMBA. The designed metamaterial-based SLMBA was fabricated and demonstrated to have a saturated output power of 43 dBm, a BO range of 10 dB, and a BO efficiency maintained above 56.5% within the frequency range of 1.8–2.1 GHz, with a size of 72 mm × 101 mm, which represents a 38% reduction in size when compared to traditional transmission-line-based SLMBAs. A 20-MHz 5G NR signal has been used to implement digital pre-distortion (DPD) and enhance SLMBA linearity.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.60
自引率
6.20%
发文量
101
审稿时长
>12 weeks
期刊介绍: Prediction through modelling forms the basis of engineering design. The computational power at the fingertips of the professional engineer is increasing enormously and techniques for computer simulation are changing rapidly. Engineers need models which relate to their design area and which are adaptable to new design concepts. They also need efficient and friendly ways of presenting, viewing and transmitting the data associated with their models. The International Journal of Numerical Modelling: Electronic Networks, Devices and Fields provides a communication vehicle for numerical modelling methods and data preparation methods associated with electrical and electronic circuits and fields. It concentrates on numerical modelling rather than abstract numerical mathematics. Contributions on numerical modelling will cover the entire subject of electrical and electronic engineering. They will range from electrical distribution networks to integrated circuits on VLSI design, and from static electric and magnetic fields through microwaves to optical design. They will also include the use of electrical networks as a modelling medium.
期刊最新文献
Temperature-Insensitive On-Chip Resistors for Linear Voltage-To-Current Conversion in Low-Power Voltage and Current References Solutions of the Fractional Differential Equations Including Caputo–Fabrizio, Caputo, and Integer Order Derivatives via SMV Polynomials Application of Spoof Surface Plasmon Polaritons for the Design of Sequential Load Modulated Balanced Amplifier A Novel Hybrid Algorithm for Source Reconstruction Method in Near-Field Prediction Issue Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1