Five-Modal Three-Dimensional Optical Microscopy via Single 1550 nm Fiber Laser

IF 3.7 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Advanced Photonics Research Pub Date : 2025-01-28 DOI:10.1002/adpr.202400115
Jia Yu, Xueming Cao, Feng Xiang, Nannan Wang, Ting Wu, Yufeng Gao, Jiuling Liao, Hui Li, Tzu-Ming Liu, Wei Zheng
{"title":"Five-Modal Three-Dimensional Optical Microscopy via Single 1550 nm Fiber Laser","authors":"Jia Yu,&nbsp;Xueming Cao,&nbsp;Feng Xiang,&nbsp;Nannan Wang,&nbsp;Ting Wu,&nbsp;Yufeng Gao,&nbsp;Jiuling Liao,&nbsp;Hui Li,&nbsp;Tzu-Ming Liu,&nbsp;Wei Zheng","doi":"10.1002/adpr.202400115","DOIUrl":null,"url":null,"abstract":"<p>Multimodal optical microscopy can be used to visualize multiple biological targets at the same location and at similar spatial resolutions, enabling more comprehensive studies of complex biological samples. However, current multimodal imaging systems typically use multiple or specially designed excitation lasers. Furthermore, previous studies have reported only three or four types of imaging modalities, limiting the number of imaging targets. This study develops an imaging system based on a single commercialized 1550 nm fiber laser and integrates five imaging modalities: second harmonic generation, third harmonic generation, two-photon fluorescence, three-photon fluorescence, and reflected confocal microscopy. Utilizing the characteristics of different imaging modalities, various biological components in biological tissues can be revealed simultaneously and cell movement in a complex biological environment can be traced noninvasively. The capacity of deep imaging has also been demonstrated in the mouse brain. The results show that the proposed multimodal microscopy system has great application potential in biomedical fields, such as tumor diagnosis and immunotherapy.</p>","PeriodicalId":7263,"journal":{"name":"Advanced Photonics Research","volume":"6 3","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adpr.202400115","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Photonics Research","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adpr.202400115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Multimodal optical microscopy can be used to visualize multiple biological targets at the same location and at similar spatial resolutions, enabling more comprehensive studies of complex biological samples. However, current multimodal imaging systems typically use multiple or specially designed excitation lasers. Furthermore, previous studies have reported only three or four types of imaging modalities, limiting the number of imaging targets. This study develops an imaging system based on a single commercialized 1550 nm fiber laser and integrates five imaging modalities: second harmonic generation, third harmonic generation, two-photon fluorescence, three-photon fluorescence, and reflected confocal microscopy. Utilizing the characteristics of different imaging modalities, various biological components in biological tissues can be revealed simultaneously and cell movement in a complex biological environment can be traced noninvasively. The capacity of deep imaging has also been demonstrated in the mouse brain. The results show that the proposed multimodal microscopy system has great application potential in biomedical fields, such as tumor diagnosis and immunotherapy.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多模态光学显微镜可用于在同一位置以相似的空间分辨率观察多个生物目标,从而对复杂的生物样本进行更全面的研究。然而,目前的多模态成像系统通常使用多个或专门设计的激发激光器。此外,以往的研究只报告了三到四种成像模式,限制了成像目标的数量。本研究开发了一种基于单个商业化 1550 nm 光纤激光器的成像系统,集成了五种成像模式:二次谐波发生、三次谐波发生、双光子荧光、三光子荧光和反射共聚焦显微镜。利用不同成像模式的特点,可以同时显示生物组织中的各种生物成分,并无创追踪复杂生物环境中的细胞运动。深度成像的能力也在小鼠大脑中得到了验证。研究结果表明,所提出的多模态显微系统在肿瘤诊断和免疫治疗等生物医学领域具有巨大的应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
2.70%
发文量
0
期刊最新文献
Issue Information Self-Powered Broadband Computational Imaging Based on CdS/Ge 2D/3D Type-I Heterojunction Photodetectors Self-Powered Broadband Computational Imaging Based on CdS/Ge 2D/3D Type-I Heterojunction Photodetectors Issue Information Chemically Engineered GaN Thin Films for Light-Stimulated Artificial Synapses
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1