Room-Temperature Lasing of Dual-Metal Nanoparticle Surface Lattice Resonance with Monolithic InGaAs Multiple Quantum Wells on GaAs Substrates

IF 3.9 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Advanced Photonics Research Pub Date : 2024-09-30 DOI:10.1002/adpr.202400120
Wen-Hsuan Hsieh, Chia-Jui Chang, Cheng-Ching Li, Kuo-Ping Chen, Jhih-Sheng Wu, Chia-Yen Huang, Tien-Chang Lu
{"title":"Room-Temperature Lasing of Dual-Metal Nanoparticle Surface Lattice Resonance with Monolithic InGaAs Multiple Quantum Wells on GaAs Substrates","authors":"Wen-Hsuan Hsieh,&nbsp;Chia-Jui Chang,&nbsp;Cheng-Ching Li,&nbsp;Kuo-Ping Chen,&nbsp;Jhih-Sheng Wu,&nbsp;Chia-Yen Huang,&nbsp;Tien-Chang Lu","doi":"10.1002/adpr.202400120","DOIUrl":null,"url":null,"abstract":"<p>This study demonstrates the surface lattice resonance (SLR) laser utilizing asymmetric dual-metallic nanoparticle arrays, incorporating a high-refractive-index material, which exhibits a confinement factor of 16%, enhancing the coupling between metal and dielectric materials. Multiple quantum wells (MQWs) are integrated with plasmonic SLR in the proposed structure. Through theoretical design and experimental validation, the MQW plasmonic SLR laser exhibits excellent high Q-factor and stable operation at room temperature. This demonstration enhances laser performance and achieves low-threshold operation with a laser threshold as low as ≈2.39 MW cm<sup>−2</sup>. This study's design of plasmonic SLR lasers further advances the realization of optoelectronic device applications.</p>","PeriodicalId":7263,"journal":{"name":"Advanced Photonics Research","volume":"6 3","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adpr.202400120","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Photonics Research","FirstCategoryId":"1085","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adpr.202400120","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This study demonstrates the surface lattice resonance (SLR) laser utilizing asymmetric dual-metallic nanoparticle arrays, incorporating a high-refractive-index material, which exhibits a confinement factor of 16%, enhancing the coupling between metal and dielectric materials. Multiple quantum wells (MQWs) are integrated with plasmonic SLR in the proposed structure. Through theoretical design and experimental validation, the MQW plasmonic SLR laser exhibits excellent high Q-factor and stable operation at room temperature. This demonstration enhances laser performance and achieves low-threshold operation with a laser threshold as low as ≈2.39 MW cm−2. This study's design of plasmonic SLR lasers further advances the realization of optoelectronic device applications.

Abstract Image

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
GaAs衬底单片InGaAs多量子阱双金属纳米粒子表面晶格共振的室温激光
这项研究展示了利用非对称双金属纳米粒子阵列的表面晶格共振(SLR)激光器,该激光器采用了高折射率材料,具有 16% 的约束因子,增强了金属和介电材料之间的耦合。在所提出的结构中,多个量子阱(MQW)与质子 SLR 集成在一起。通过理论设计和实验验证,MQW 质子 SLR 激光器表现出卓越的高 Q 值因子,并能在室温下稳定工作。该演示提高了激光性能,实现了低阈值工作,激光阈值低至≈2.39 MW cm-2。这项研究设计的等离子体 SLR 激光器进一步推动了光电器件应用的实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
2.70%
发文量
0
期刊最新文献
Issue Information Front Cover: Spectral Peaked Optical Frequency Comb for Highly Sensitive Spectroscopy (Adv. Photonics Res. 1/2026) Issue Information Photonic Metrology with Hierarchic Quantum Frequentist Bounds Issue Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1