Qing Wu, Jinlong Zhang, Song Yang, Fusheng Luo, Zeyu Yan, Xiude Liu, Haibo Xie, Prof. Jun Huang, Prof. Yiwang Chen
{"title":"Innentitelbild: Bridging Electrolyte Bulk and Interfacial Chemistry: Dynamic Protective Strategy Enable Ultra-Long Lifespan Aqueous Zinc Batteries (Angew. Chem. 10/2025)","authors":"Qing Wu, Jinlong Zhang, Song Yang, Fusheng Luo, Zeyu Yan, Xiude Liu, Haibo Xie, Prof. Jun Huang, Prof. Yiwang Chen","doi":"10.1002/ange.202502397","DOIUrl":null,"url":null,"abstract":"<p>The main bottleneck of rechargeable aqueous zinc batteries (AZBs) is their limited cycle lifespans stemming from the unhealthy electrolyte bulk and fragile interface. In their Research Article (e202418524), Jun Huang, Yiwang Chen et al. report a dynamic protective strategy to bridge electrolyte bulk and interfacial chemistry for ultra-long lifespan AZBs, which greatly unlocks the potential for an extended service lifespan for advanced AZBs.\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure>\n </p>","PeriodicalId":7803,"journal":{"name":"Angewandte Chemie","volume":"137 10","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ange.202502397","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ange.202502397","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The main bottleneck of rechargeable aqueous zinc batteries (AZBs) is their limited cycle lifespans stemming from the unhealthy electrolyte bulk and fragile interface. In their Research Article (e202418524), Jun Huang, Yiwang Chen et al. report a dynamic protective strategy to bridge electrolyte bulk and interfacial chemistry for ultra-long lifespan AZBs, which greatly unlocks the potential for an extended service lifespan for advanced AZBs.