Decoding chromosomal instability insights in CRC by integrating omics and patient-derived organoids.

IF 11.4 1区 医学 Q1 ONCOLOGY Journal of Experimental & Clinical Cancer Research Pub Date : 2025-02-28 DOI:10.1186/s13046-025-03308-8
Federica Papaccio, Manuel Cabeza-Segura, Blanca García-Micó, Francisco Gimeno-Valiente, Sheila Zúñiga-Trejos, Valentina Gambardella, María Fernanda Gutiérrez-Bravo, Carolina Martinez-Ciarpaglini, Pilar Rentero-Garrido, Tania Fleitas, Susana Roselló, Juan Antonio Carbonell-Asins, Marisol Huerta, David Moro-Valdezate, Desamparados Roda, Noelia Tarazona, Manuel M Sánchez Del Pino, Andrés Cervantes, Josefa Castillo
{"title":"Decoding chromosomal instability insights in CRC by integrating omics and patient-derived organoids.","authors":"Federica Papaccio, Manuel Cabeza-Segura, Blanca García-Micó, Francisco Gimeno-Valiente, Sheila Zúñiga-Trejos, Valentina Gambardella, María Fernanda Gutiérrez-Bravo, Carolina Martinez-Ciarpaglini, Pilar Rentero-Garrido, Tania Fleitas, Susana Roselló, Juan Antonio Carbonell-Asins, Marisol Huerta, David Moro-Valdezate, Desamparados Roda, Noelia Tarazona, Manuel M Sánchez Del Pino, Andrés Cervantes, Josefa Castillo","doi":"10.1186/s13046-025-03308-8","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Chromosomal instability (CIN) is involved in about 70% of colorectal cancers (CRCs) and is associated with poor prognosis and drug resistance. From a clinical perspective, a better knowledge of these tumour's biology will help to guide therapeutic strategies more effectively.</p><p><strong>Methods: </strong>We used high-density chromosomal microarray analysis to evaluate CIN level of patient-derived organoids (PDOs) and their original mCRC tissues. We integrated the RNA-seq and mass spectrometry-based proteomics data from PDOs in a functional interaction network to identify the significantly dysregulated processes in CIN. This was followed by a proteome-wGII Pearson correlation analysis and an in silico validation of main findings using functional genomic databases and patient-tissues datasets to prioritize the high-confidence CIN features.</p><p><strong>Results: </strong>By applying the weighted Genome Instability Index (wGII) to identify CIN, we classified PDOs and demonstrated a good correlation with tissues. Multi-omics analysis showed that our organoids recapitulated genomic, transcriptomic and proteomic CIN features of independent tissues cohorts. Thanks to proteotranscriptomics, we uncovered significant associations between mitochondrial metabolism and epithelial-mesenchymal transition in CIN CRC PDOs. Correlating PDOs wGII with protein abundance, we identified a subset of proteins significantly correlated with CIN. Co-localisation analysis in PDOs strengthened the putative role of IPO7 and YAP, and, through in silico analysis, we found that some of the targets give significant dependencies in cell lines with CIN compatible status.</p><p><strong>Conclusions: </strong>We first demonstrated that PDO models are a faithful reflection of CIN tissues at the genetic and phenotypic level. Our new findings prioritize a subset of genes and molecular processes putatively required to cope with the burden on cellular fitness imposed by CIN and associated with disease aggressiveness.</p>","PeriodicalId":50199,"journal":{"name":"Journal of Experimental & Clinical Cancer Research","volume":"44 1","pages":"77"},"PeriodicalIF":11.4000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11869439/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental & Clinical Cancer Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13046-025-03308-8","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Chromosomal instability (CIN) is involved in about 70% of colorectal cancers (CRCs) and is associated with poor prognosis and drug resistance. From a clinical perspective, a better knowledge of these tumour's biology will help to guide therapeutic strategies more effectively.

Methods: We used high-density chromosomal microarray analysis to evaluate CIN level of patient-derived organoids (PDOs) and their original mCRC tissues. We integrated the RNA-seq and mass spectrometry-based proteomics data from PDOs in a functional interaction network to identify the significantly dysregulated processes in CIN. This was followed by a proteome-wGII Pearson correlation analysis and an in silico validation of main findings using functional genomic databases and patient-tissues datasets to prioritize the high-confidence CIN features.

Results: By applying the weighted Genome Instability Index (wGII) to identify CIN, we classified PDOs and demonstrated a good correlation with tissues. Multi-omics analysis showed that our organoids recapitulated genomic, transcriptomic and proteomic CIN features of independent tissues cohorts. Thanks to proteotranscriptomics, we uncovered significant associations between mitochondrial metabolism and epithelial-mesenchymal transition in CIN CRC PDOs. Correlating PDOs wGII with protein abundance, we identified a subset of proteins significantly correlated with CIN. Co-localisation analysis in PDOs strengthened the putative role of IPO7 and YAP, and, through in silico analysis, we found that some of the targets give significant dependencies in cell lines with CIN compatible status.

Conclusions: We first demonstrated that PDO models are a faithful reflection of CIN tissues at the genetic and phenotypic level. Our new findings prioritize a subset of genes and molecular processes putatively required to cope with the burden on cellular fitness imposed by CIN and associated with disease aggressiveness.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
18.20
自引率
1.80%
发文量
333
审稿时长
1 months
期刊介绍: The Journal of Experimental & Clinical Cancer Research is an esteemed peer-reviewed publication that focuses on cancer research, encompassing everything from fundamental discoveries to practical applications. We welcome submissions that showcase groundbreaking advancements in the field of cancer research, especially those that bridge the gap between laboratory findings and clinical implementation. Our goal is to foster a deeper understanding of cancer, improve prevention and detection strategies, facilitate accurate diagnosis, and enhance treatment options. We are particularly interested in manuscripts that shed light on the mechanisms behind the development and progression of cancer, including metastasis. Additionally, we encourage submissions that explore molecular alterations or biomarkers that can help predict the efficacy of different treatments or identify drug resistance. Translational research related to targeted therapies, personalized medicine, tumor immunotherapy, and innovative approaches applicable to clinical investigations are also of great interest to us. We provide a platform for the dissemination of large-scale molecular characterizations of human tumors and encourage researchers to share their insights, discoveries, and methodologies with the wider scientific community. By publishing high-quality research articles, reviews, and commentaries, the Journal of Experimental & Clinical Cancer Research strives to contribute to the continuous improvement of cancer care and make a meaningful impact on patients' lives.
期刊最新文献
A blood-based liquid biopsy analyzing soluble immune checkpoints and cytokines identifies distinct neuroendocrine tumors. C-terminal binding protein-2 triggers CYR61-induced metastatic dissemination of osteosarcoma in a non-hypoxic microenvironment. Multiple mechanisms and applications of tertiary lymphoid structures and immune checkpoint blockade. NONO regulates m5C modification and alternative splicing of PTEN mRNAs to drive gastric cancer progression. Exosome-transmitted LUCAT1 promotes stemness transformation and chemoresistance in bladder cancer by binding to IGF2BP2.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1