Hofmeister Effect-Enhanced, Nanoparticle-Shielded, Thermally Stable Hydrogels for Anti-UV, Fast-Response, and All-Day-Modulated Smart Windows

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Materials Pub Date : 2025-03-03 DOI:10.1002/adma.202418372
Kai Wang, Shuzhi Liu, Jiahui Yu, Peixin Hong, Wenyi Wang, Weilong Cai, Jianying Huang, Xiancai Jiang, Yuekun Lai, Zhiqun Lin
{"title":"Hofmeister Effect-Enhanced, Nanoparticle-Shielded, Thermally Stable Hydrogels for Anti-UV, Fast-Response, and All-Day-Modulated Smart Windows","authors":"Kai Wang, Shuzhi Liu, Jiahui Yu, Peixin Hong, Wenyi Wang, Weilong Cai, Jianying Huang, Xiancai Jiang, Yuekun Lai, Zhiqun Lin","doi":"10.1002/adma.202418372","DOIUrl":null,"url":null,"abstract":"Thermochromic smart windows offer energy-saving potential through temperature-responsive optical transmittance adjustments, yet face challenges in achieving anti-UV radiation, fast response, and high-temperature stability characteristics for long-term use. Herein, the rational design of Hofmeister effect-enhanced, nanoparticle-shielded composite hydrogels, composed of hydroxypropylmethylcellulose (HPMC), poly(<i>N,N</i>-dimethylacrylamide) (PDMAA), sodium sulfate, and polydopamine nanoparticles, for anti-UV, fast-response, and all-day-modulated smart windows is reported. Specifically, a three-dimensional network of PDMAA is created as the supporting skeleton, markedly enhancing the thermal stability of pristine HPMC hydrogels. Sodium sulfate induces a Hofmeister effect, lowering the lower critical solution temperature to 32 °C while accelerating phase transition rates fivefold (30 s vs. 150 s). Intriguingly, small-sized polydopamine nanoparticles simultaneously enable high luminous transmittance of 66.9% and outstanding anti-UV capability. Additionally, the smart window showcases a high solar modulation (51.2%) and maintains a 10.2 °C temperature reduction versus a glass window during all-day modulation applications. The design strategy is effective, opening up new avenues for manufacturing fast-response and durable thermochromic smart windows for energy savings and emission reduction.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"37 1","pages":""},"PeriodicalIF":27.4000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202418372","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Thermochromic smart windows offer energy-saving potential through temperature-responsive optical transmittance adjustments, yet face challenges in achieving anti-UV radiation, fast response, and high-temperature stability characteristics for long-term use. Herein, the rational design of Hofmeister effect-enhanced, nanoparticle-shielded composite hydrogels, composed of hydroxypropylmethylcellulose (HPMC), poly(N,N-dimethylacrylamide) (PDMAA), sodium sulfate, and polydopamine nanoparticles, for anti-UV, fast-response, and all-day-modulated smart windows is reported. Specifically, a three-dimensional network of PDMAA is created as the supporting skeleton, markedly enhancing the thermal stability of pristine HPMC hydrogels. Sodium sulfate induces a Hofmeister effect, lowering the lower critical solution temperature to 32 °C while accelerating phase transition rates fivefold (30 s vs. 150 s). Intriguingly, small-sized polydopamine nanoparticles simultaneously enable high luminous transmittance of 66.9% and outstanding anti-UV capability. Additionally, the smart window showcases a high solar modulation (51.2%) and maintains a 10.2 °C temperature reduction versus a glass window during all-day modulation applications. The design strategy is effective, opening up new avenues for manufacturing fast-response and durable thermochromic smart windows for energy savings and emission reduction.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
热致变色智能窗通过温度响应式光学透射率调节提供节能潜力,但在实现抗紫外线辐射、快速响应和长期使用的高温稳定性等特性方面面临挑战。本文报告了由羟丙基甲基纤维素(HPMC)、聚(N,N-二甲基丙烯酰胺)(PDMAA)、硫酸钠和聚多巴胺纳米粒子组成的霍夫迈斯特效应增强型纳米粒子屏蔽复合水凝胶的合理设计,用于抗紫外线、快速响应和全天候调节的智能窗户。具体来说,PDMAA 的三维网络作为支撑骨架,显著提高了原始 HPMC 水凝胶的热稳定性。硫酸钠诱导了霍夫迈斯特效应,将较低的临界溶液温度降低到 32 °C,同时将相变速率加快了五倍(30 秒与 150 秒)。有趣的是,小尺寸的多巴胺纳米粒子同时实现了 66.9% 的高透光率和出色的抗紫外线能力。此外,该智能窗户还具有较高的太阳光调节能力(51.2%),在全天候调节应用中,与玻璃窗相比,温度可降低 10.2 °C。该设计策略非常有效,为制造快速响应、经久耐用的热致变色智能窗,实现节能减排开辟了新途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
期刊最新文献
A Soft Nonpolar-Soluble Two-Dimensional Perovskite for General Construction of Mixed-Dimensional Heterojunctions Bio-Based Multicompartment Photonic Pigments: Unlocking Non-Iridescent Pure RGB Structural Colors for Versatile Chromatic Engineering Hofmeister Effect-Enhanced, Nanoparticle-Shielded, Thermally Stable Hydrogels for Anti-UV, Fast-Response, and All-Day-Modulated Smart Windows Self-Oxygenating PROTAC Microneedle for Spatiotemporally-Confined Protein Degradation and Enhanced Glioblastoma Therapy Minimizing Buried Interface Energy Losses with Post-Assembled Chelating Molecular Bridges for High-Performance and Stable Inverted Perovskite Solar Cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1