Revisiting Membrane-Free Zn–Mn Redox Flow Batteries: An Innovative Universal Aspartic Acid Additive for Superior Stability

IF 24.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Advanced Energy Materials Pub Date : 2025-03-03 DOI:10.1002/aenm.202500621
Hyeokjun Jang, Mu Geun Son, Duho Han, Jinyeong Choi, Jin Hong Lee, Pilgun Oh, Joonhee Kang, Minjoon Park
{"title":"Revisiting Membrane-Free Zn–Mn Redox Flow Batteries: An Innovative Universal Aspartic Acid Additive for Superior Stability","authors":"Hyeokjun Jang, Mu Geun Son, Duho Han, Jinyeong Choi, Jin Hong Lee, Pilgun Oh, Joonhee Kang, Minjoon Park","doi":"10.1002/aenm.202500621","DOIUrl":null,"url":null,"abstract":"An all-aqueous membrane-free Zn–Mn redox flow battery utilizing deposition chemistry can be an excellent alternative to conventional aqueous redox flow batteries for reducing costs and improving stability. In the neutral/mildly acidic electrolyte environment of aqueous Zn–Mn redox flow batteries, the anode still suffers from issues such as zinc dendrite growth and corrosion, while the cathode struggles with poor reversibility. The same issues arise in membrane-free Zn–Mn redox flow batteries that use a combined electrolyte, where both anolyte and catholyte are combined. Therefore, it is possible to simultaneously address the issues of both the anode and cathode by using a single additive in the combined electrolyte. Here, aspartic acid is introduced as a universal additive for an all-aqueous membrane-free Zn–Mn redox flow battery. In the combined electrolyte, aspartic acid bonded to the Zn anode surface, Zn<sup>2+</sup> ions, and Mn<sup>2+</sup> ions, resolving almost all the side reactions. Impressively, membrane-free Zn–Mn redox flow battery with aspartic acid demonstrated remarkable cycling stability of 300 cycles at an areal capacity of 10 mAh cm<sup>−2</sup>. A new efficient strategy is proposed for controlling overall side reactions by the simple addition of a single additive in the integrated electrolyte with this report.","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":"36 1","pages":""},"PeriodicalIF":24.4000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aenm.202500621","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

An all-aqueous membrane-free Zn–Mn redox flow battery utilizing deposition chemistry can be an excellent alternative to conventional aqueous redox flow batteries for reducing costs and improving stability. In the neutral/mildly acidic electrolyte environment of aqueous Zn–Mn redox flow batteries, the anode still suffers from issues such as zinc dendrite growth and corrosion, while the cathode struggles with poor reversibility. The same issues arise in membrane-free Zn–Mn redox flow batteries that use a combined electrolyte, where both anolyte and catholyte are combined. Therefore, it is possible to simultaneously address the issues of both the anode and cathode by using a single additive in the combined electrolyte. Here, aspartic acid is introduced as a universal additive for an all-aqueous membrane-free Zn–Mn redox flow battery. In the combined electrolyte, aspartic acid bonded to the Zn anode surface, Zn2+ ions, and Mn2+ ions, resolving almost all the side reactions. Impressively, membrane-free Zn–Mn redox flow battery with aspartic acid demonstrated remarkable cycling stability of 300 cycles at an areal capacity of 10 mAh cm−2. A new efficient strategy is proposed for controlling overall side reactions by the simple addition of a single additive in the integrated electrolyte with this report.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Energy Materials
Advanced Energy Materials CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
41.90
自引率
4.00%
发文量
889
审稿时长
1.4 months
期刊介绍: Established in 2011, Advanced Energy Materials is an international, interdisciplinary, English-language journal that focuses on materials used in energy harvesting, conversion, and storage. It is regarded as a top-quality journal alongside Advanced Materials, Advanced Functional Materials, and Small. With a 2022 Impact Factor of 27.8, Advanced Energy Materials is considered a prime source for the best energy-related research. The journal covers a wide range of topics in energy-related research, including organic and inorganic photovoltaics, batteries and supercapacitors, fuel cells, hydrogen generation and storage, thermoelectrics, water splitting and photocatalysis, solar fuels and thermosolar power, magnetocalorics, and piezoelectronics. The readership of Advanced Energy Materials includes materials scientists, chemists, physicists, and engineers in both academia and industry. The journal is indexed in various databases and collections, such as Advanced Technologies & Aerospace Database, FIZ Karlsruhe, INSPEC (IET), Science Citation Index Expanded, Technology Collection, and Web of Science, among others.
期刊最新文献
Representative By-Products of Aqueous Zinc-Vanadium Batteries: Origins, Roles, Strategies, and Prospects Photocatalytic and Electrochemical Synthesis of Biofuel via Efficient Valorization of Biomass Revisiting Membrane-Free Zn–Mn Redox Flow Batteries: An Innovative Universal Aspartic Acid Additive for Superior Stability Enhanced Performance and Stability of Perovskite Solar Cells Through Modification of SnO2 Electron Transport Layer with Stable Conformation Surfactant Characterization and Reuse of Lithium-ion Battery Cathode Material Recovered Through a Bacterial Process
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1