Replica-Assisted Super-Resolution Fluorescence Imaging in Scattering Media

IF 6.5 1区 物理与天体物理 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY ACS Photonics Pub Date : 2025-03-03 DOI:10.1021/acsphotonics.4c02468
Tengfei Wu, YoonSeok Baek, Fei Xia, Sylvain Gigan, Hilton B de Aguiar
{"title":"Replica-Assisted Super-Resolution Fluorescence Imaging in Scattering Media","authors":"Tengfei Wu, YoonSeok Baek, Fei Xia, Sylvain Gigan, Hilton B de Aguiar","doi":"10.1021/acsphotonics.4c02468","DOIUrl":null,"url":null,"abstract":"Far-field super-resolution fluorescence microscopy has been rapidly developed for applications ranging from cell biology to nanomaterials. However, it remains a significant challenge to achieve super-resolution imaging at depth in opaque materials. In this study, we present a super-resolution microscopy technique for imaging hidden fluorescent objects through scattering media, started by exploiting the inherent object replica generation arising from the memory effect, i.e., the seemingly informationless emission speckle can be regarded as a random superposition of multiple object copies. Inspired by the concept of super-resolution optical fluctuation imaging, we use temporally fluctuating speckles to excite fluorescence signals and perform high-order cumulant analysis on the fluctuation, which can not only improve the image resolution but also increase the speckle contrast to isolate only the bright object replicas. A super-resolved image can be finally retrieved by simply unmixing the sparsely distributed replicas with their location map. This methodology allows one to overcome scattering and achieve robust super-resolution fluorescence imaging, circumventing the need for heavy computational steps.","PeriodicalId":23,"journal":{"name":"ACS Photonics","volume":"10 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Photonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1021/acsphotonics.4c02468","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Far-field super-resolution fluorescence microscopy has been rapidly developed for applications ranging from cell biology to nanomaterials. However, it remains a significant challenge to achieve super-resolution imaging at depth in opaque materials. In this study, we present a super-resolution microscopy technique for imaging hidden fluorescent objects through scattering media, started by exploiting the inherent object replica generation arising from the memory effect, i.e., the seemingly informationless emission speckle can be regarded as a random superposition of multiple object copies. Inspired by the concept of super-resolution optical fluctuation imaging, we use temporally fluctuating speckles to excite fluorescence signals and perform high-order cumulant analysis on the fluctuation, which can not only improve the image resolution but also increase the speckle contrast to isolate only the bright object replicas. A super-resolved image can be finally retrieved by simply unmixing the sparsely distributed replicas with their location map. This methodology allows one to overcome scattering and achieve robust super-resolution fluorescence imaging, circumventing the need for heavy computational steps.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Photonics
ACS Photonics NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
11.90
自引率
5.70%
发文量
438
审稿时长
2.3 months
期刊介绍: Published as soon as accepted and summarized in monthly issues, ACS Photonics will publish Research Articles, Letters, Perspectives, and Reviews, to encompass the full scope of published research in this field.
期刊最新文献
Replica-Assisted Super-Resolution Fluorescence Imaging in Scattering Media Reconfigurable Ion-Migration Driven Memristor for Multistate Neuromorphic Associative Learning Computed Tomography Using Meta-Optics Generation Dynamics of Broadband Extreme Ultraviolet Vortex Beams Gain-Dominated Phase Customization Enables the Hybrid Quaternary Encoding of Dissipative Soliton Molecules
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1