Tong Jiang, Cui Guo, Hao Yu, Ziyue Wang, Kaiyang Zheng, Xinran Zhang, Siyuan Tang, Chuxiao Wang, Hongbing Shao, Chao Zhang, Yantao Liang, Liangliang Kong, Huiwang Gao, Andrew McMinn, Min Wang
{"title":"Habitat-Dependent DNA viral communities in atmospheric aerosols: Insights from terrestrial and marine ecosystems in East Asia","authors":"Tong Jiang, Cui Guo, Hao Yu, Ziyue Wang, Kaiyang Zheng, Xinran Zhang, Siyuan Tang, Chuxiao Wang, Hongbing Shao, Chao Zhang, Yantao Liang, Liangliang Kong, Huiwang Gao, Andrew McMinn, Min Wang","doi":"10.1016/j.envint.2025.109359","DOIUrl":null,"url":null,"abstract":"The transmission of viruses through aerosols is of growing public health concern, yet research on aerosol-associated viral communities lags behind that of terrestrial and aquatic ecosystems. Here, DNA viral diversity in natural aerosols from both over land and ocean in the East Asia region was examined. The results showed that atmospheric environments harbor a distinct viral community that differs from those present in terrestrial and aquatic ecosystems. A comparison of aerosol samples from different locations revealed that aerosol viruses are strongly influenced by altitude and their sources. Fragments of viruses that can infect pathogenic bacteria, as well as pathogenic viruses (such as herpesviruses, Inoviruses, and Iridovirus) were detected. Anthropogenically-influenced land aerosol samples contained viral communities with greater richness and diversity as well as a higher relative abundance of pathogenic and lytic viruses compared to pristine marine airborne samples. Furthermore, habitat-specific auxiliary metabolic genes (AMGs) were observed, such as the phosphate regulon (<em>phoH</em>), which was more prevalent in ocean aerosol samples and regulates phosphate uptake under low-phosphate conditions, thereby assisting viral hosts in overcoming metabolic challenges in different environmental conditions. This study highlights the ecological distinctness of the airborne viral community and the interconnectedness between those from land, sea, and atmosphere, underscoring the importance of evaluating their potential pathogenicity in future research.","PeriodicalId":308,"journal":{"name":"Environment International","volume":"130 1","pages":""},"PeriodicalIF":10.3000,"publicationDate":"2025-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environment International","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.envint.2025.109359","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The transmission of viruses through aerosols is of growing public health concern, yet research on aerosol-associated viral communities lags behind that of terrestrial and aquatic ecosystems. Here, DNA viral diversity in natural aerosols from both over land and ocean in the East Asia region was examined. The results showed that atmospheric environments harbor a distinct viral community that differs from those present in terrestrial and aquatic ecosystems. A comparison of aerosol samples from different locations revealed that aerosol viruses are strongly influenced by altitude and their sources. Fragments of viruses that can infect pathogenic bacteria, as well as pathogenic viruses (such as herpesviruses, Inoviruses, and Iridovirus) were detected. Anthropogenically-influenced land aerosol samples contained viral communities with greater richness and diversity as well as a higher relative abundance of pathogenic and lytic viruses compared to pristine marine airborne samples. Furthermore, habitat-specific auxiliary metabolic genes (AMGs) were observed, such as the phosphate regulon (phoH), which was more prevalent in ocean aerosol samples and regulates phosphate uptake under low-phosphate conditions, thereby assisting viral hosts in overcoming metabolic challenges in different environmental conditions. This study highlights the ecological distinctness of the airborne viral community and the interconnectedness between those from land, sea, and atmosphere, underscoring the importance of evaluating their potential pathogenicity in future research.
期刊介绍:
Environmental Health publishes manuscripts focusing on critical aspects of environmental and occupational medicine, including studies in toxicology and epidemiology, to illuminate the human health implications of exposure to environmental hazards. The journal adopts an open-access model and practices open peer review.
It caters to scientists and practitioners across all environmental science domains, directly or indirectly impacting human health and well-being. With a commitment to enhancing the prevention of environmentally-related health risks, Environmental Health serves as a public health journal for the community and scientists engaged in matters of public health significance concerning the environment.