Enhanced anti-corrosion and morphological properties of nano-Ti polymer coatings with graphene additives

IF 2.1 4区 材料科学 Q3 CHEMISTRY, MULTIDISCIPLINARY Journal of Nanoparticle Research Pub Date : 2025-03-04 DOI:10.1007/s11051-025-06222-4
Bo Wang, Tao Wan, Shicheng Wei, Yujiang Wang, Wei Huang, Yi Liang, Junqi Li
{"title":"Enhanced anti-corrosion and morphological properties of nano-Ti polymer coatings with graphene additives","authors":"Bo Wang,&nbsp;Tao Wan,&nbsp;Shicheng Wei,&nbsp;Yujiang Wang,&nbsp;Wei Huang,&nbsp;Yi Liang,&nbsp;Junqi Li","doi":"10.1007/s11051-025-06222-4","DOIUrl":null,"url":null,"abstract":"<div><p>Corrosion is a widespread issue affecting many aspects of daily life. To further improve the anti-corrosion performance of nano-Ti polymer coatings from our previous research, graphene slurry is filled to modify nano-Ti epoxy resin coatings. The structure, anti-permeability, anti-corrosion, and anti-wear properties of nano-Ti polymer functional coatings with different graphene slurry were systemically investigated by field emission scanning microscopy (FE-SEM), Fourier transform infrared spectroscopy (FT-IR), immersion test, electrochemical measurements, and wear test. The FE-SEM results showed that graphene can be well dispersed in nano-Ti polymer coating when the graphene content is 0.5 wt%. Furthermore, the results showed that the addition of graphene can improve the anti-permeability, anti-corrosion, and anti-wear properties of nano-Ti polymer coatings. The water uptake of nano-Ti polymer/graphene functional coatings was reduced from 2.4 to 0.05%. The friction coefficient of the coatings also decreased from 0.53 to 0.22 due to the good dispersion of graphene slurry. The corrosion resistance of the functional coatings decreased with increasing graphene slurry. Nano-Ti polymer/graphene functional coatings showed optimal comprehensive performance and anti-corrosion performance as the graphene content was 0.5 wt%; the appropriate amount of graphene slurry can effectively improve the anti-corrosion performance of the nano-Ti polymer coating.</p></div>","PeriodicalId":653,"journal":{"name":"Journal of Nanoparticle Research","volume":"27 3","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanoparticle Research","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11051-025-06222-4","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Corrosion is a widespread issue affecting many aspects of daily life. To further improve the anti-corrosion performance of nano-Ti polymer coatings from our previous research, graphene slurry is filled to modify nano-Ti epoxy resin coatings. The structure, anti-permeability, anti-corrosion, and anti-wear properties of nano-Ti polymer functional coatings with different graphene slurry were systemically investigated by field emission scanning microscopy (FE-SEM), Fourier transform infrared spectroscopy (FT-IR), immersion test, electrochemical measurements, and wear test. The FE-SEM results showed that graphene can be well dispersed in nano-Ti polymer coating when the graphene content is 0.5 wt%. Furthermore, the results showed that the addition of graphene can improve the anti-permeability, anti-corrosion, and anti-wear properties of nano-Ti polymer coatings. The water uptake of nano-Ti polymer/graphene functional coatings was reduced from 2.4 to 0.05%. The friction coefficient of the coatings also decreased from 0.53 to 0.22 due to the good dispersion of graphene slurry. The corrosion resistance of the functional coatings decreased with increasing graphene slurry. Nano-Ti polymer/graphene functional coatings showed optimal comprehensive performance and anti-corrosion performance as the graphene content was 0.5 wt%; the appropriate amount of graphene slurry can effectively improve the anti-corrosion performance of the nano-Ti polymer coating.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Nanoparticle Research
Journal of Nanoparticle Research 工程技术-材料科学:综合
CiteScore
4.40
自引率
4.00%
发文量
198
审稿时长
3.9 months
期刊介绍: The objective of the Journal of Nanoparticle Research is to disseminate knowledge of the physical, chemical and biological phenomena and processes in structures that have at least one lengthscale ranging from molecular to approximately 100 nm (or submicron in some situations), and exhibit improved and novel properties that are a direct result of their small size. Nanoparticle research is a key component of nanoscience, nanoengineering and nanotechnology. The focus of the Journal is on the specific concepts, properties, phenomena, and processes related to particles, tubes, layers, macromolecules, clusters and other finite structures of the nanoscale size range. Synthesis, assembly, transport, reactivity, and stability of such structures are considered. Development of in-situ and ex-situ instrumentation for characterization of nanoparticles and their interfaces should be based on new principles for probing properties and phenomena not well understood at the nanometer scale. Modeling and simulation may include atom-based quantum mechanics; molecular dynamics; single-particle, multi-body and continuum based models; fractals; other methods suitable for modeling particle synthesis, assembling and interaction processes. Realization and application of systems, structures and devices with novel functions obtained via precursor nanoparticles is emphasized. Approaches may include gas-, liquid-, solid-, and vacuum-based processes, size reduction, chemical- and bio-self assembly. Contributions include utilization of nanoparticle systems for enhancing a phenomenon or process and particle assembling into hierarchical structures, as well as formulation and the administration of drugs. Synergistic approaches originating from different disciplines and technologies, and interaction between the research providers and users in this field, are encouraged.
期刊最新文献
Enhancing magnetomechanical anticancer therapy: impact of nanoparticle aggregation Exploring borophene: pioneering trends in energy storage materials Enhanced anti-corrosion and morphological properties of nano-Ti polymer coatings with graphene additives Surface engineering of MoS2 nanosheets by silver (Agn) nanoclusters to enhance the adsorption and gas sensing performance: a DFT study Compression-induced phase transitions in supercooled liquid and glassy confined germanene
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1