MycoCurva: stay-in-place fabric formworks for curved veneer-reinforced mycelium building components

Eda Özdemir, Andrea Rossi, Philipp Eversmann
{"title":"MycoCurva: stay-in-place fabric formworks for curved veneer-reinforced mycelium building components","authors":"Eda Özdemir,&nbsp;Andrea Rossi,&nbsp;Philipp Eversmann","doi":"10.1007/s44150-025-00134-6","DOIUrl":null,"url":null,"abstract":"<div><p>Mycelium-based composites (MBCs) are a promising new class of environmentally friendly materials that can be produced using local materials and grown into a wide range of shapes and designs. Upscaling them to architectural scale, however, remains challenging particularly due to insufficient structural stability and the required manufacturing processes. The necessity of a formwork in the growing process often restricts designs to simple shapes, or requires costly formwork, which limits design flexibility. In preliminary research, the authors introduced 3D wood veneer lattices into MBCs as reinforcement, similar to steel reinforcement in concrete, to provide increased strength and scaffolding. This research combines robotic additive manufacturing of 3D wood lattices with a natural fibre textile, to act as a stay-in-place formwork for planar and curved architectural components. The combined lattice and textile serve as a support structure, eliminating the need for formwork and providing the required structural performance. As MBCs are often subject to large manufacturing tolerances, the fabrication steps that influence accuracy are analysed. Therefore, two prototypes of the same design are compared: one using a temporary formwork, and the other, a stay-in-place formwork. Results show that the temporary formwork provides precise shaping during growth, while the stay-in-place approach, incorporating natural fibre textiles, allows a more organic shape development. The methods are assessed via 3D scanning to compare the physical outcomes against the digital designs, highlighting trade-offs and limitations. This study contributes to sustainable biomaterials research by offering insights into the accuracy and feasibility of these approaches for future construction elements with MBCs.</p></div>","PeriodicalId":100117,"journal":{"name":"Architecture, Structures and Construction","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s44150-025-00134-6.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Architecture, Structures and Construction","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s44150-025-00134-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Mycelium-based composites (MBCs) are a promising new class of environmentally friendly materials that can be produced using local materials and grown into a wide range of shapes and designs. Upscaling them to architectural scale, however, remains challenging particularly due to insufficient structural stability and the required manufacturing processes. The necessity of a formwork in the growing process often restricts designs to simple shapes, or requires costly formwork, which limits design flexibility. In preliminary research, the authors introduced 3D wood veneer lattices into MBCs as reinforcement, similar to steel reinforcement in concrete, to provide increased strength and scaffolding. This research combines robotic additive manufacturing of 3D wood lattices with a natural fibre textile, to act as a stay-in-place formwork for planar and curved architectural components. The combined lattice and textile serve as a support structure, eliminating the need for formwork and providing the required structural performance. As MBCs are often subject to large manufacturing tolerances, the fabrication steps that influence accuracy are analysed. Therefore, two prototypes of the same design are compared: one using a temporary formwork, and the other, a stay-in-place formwork. Results show that the temporary formwork provides precise shaping during growth, while the stay-in-place approach, incorporating natural fibre textiles, allows a more organic shape development. The methods are assessed via 3D scanning to compare the physical outcomes against the digital designs, highlighting trade-offs and limitations. This study contributes to sustainable biomaterials research by offering insights into the accuracy and feasibility of these approaches for future construction elements with MBCs.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Identifying challenges for extended design for manufacturing and assembly (DfMA) in all phases of a construction project Methodology of Heritage Impact Assessment for World Heritage nominations: balancing impacts of the new Douro River bridge on Álvaro Siza’s Faculty of Architecture in Porto, Portugal MycoCurva: stay-in-place fabric formworks for curved veneer-reinforced mycelium building components Criteria for enhancing comfort and liveability conditions in homogenous built contexts through innovative façade interventions Fire safety regulations in Brazil: Analysis of the occupancy classification of buildings
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1