Automated Radiolabeling and Evaluation of [18F]FPMBBG: A Novel Cardiac Neuronal PET Imaging Agent

IF 0.9 4区 医学 Q4 BIOCHEMICAL RESEARCH METHODS Journal of labelled compounds & radiopharmaceuticals Pub Date : 2025-03-04 DOI:10.1002/jlcr.4139
Min Ju, Wanjie Ren, Zongyao Zhang, Jie Lu, Kai Han, Lei Wang, Wei Fang
{"title":"Automated Radiolabeling and Evaluation of [18F]FPMBBG: A Novel Cardiac Neuronal PET Imaging Agent","authors":"Min Ju,&nbsp;Wanjie Ren,&nbsp;Zongyao Zhang,&nbsp;Jie Lu,&nbsp;Kai Han,&nbsp;Lei Wang,&nbsp;Wei Fang","doi":"10.1002/jlcr.4139","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>This study reports the automated radiosynthesis and evaluation of [<sup>18</sup>F]FPMBBG, a radiopharmaceutical designed to target the norepinephrine transporter (NET). A newly developed fully protected benzylguanidine precursor, which prevents interference from non-protected benzylguanidine part during the nucleophilic process, has enabled a one-pot two-step fully automated cassette-based synthesis of [<sup>18</sup>F]FPMBBG. This advancement enhances the feasibility of the synthesis, ensures reproducibility, and allows for the production of substantial quantities of the radiotracer, paving the way for future clinical applications. [<sup>18</sup>F]FPMBBG was prepared in radiochemical yield of ~ 23% (<i>n</i> = 6, decay-corrected) within 70 min, with a radiochemical purity exceeding 98%, and molar activity of &gt; 2 GBq/μmol. In studies using miniature Bama pigs, [<sup>18</sup>F]FPMBBG showed favorable distribution, providing high-contrast cardiac images at an early stage. Moreover, desipramine inhibition studies confirmed the high NET specificity of [<sup>18</sup>F]FPMBBG. The efficient automated synthesis, robust heart uptake, and minimal background signal highlight [<sup>18</sup>F]FPMBBG as a promising PET tracer for assessing cardiac sympathetic neuronal function.</p>\n </div>","PeriodicalId":16288,"journal":{"name":"Journal of labelled compounds & radiopharmaceuticals","volume":"68 3","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of labelled compounds & radiopharmaceuticals","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jlcr.4139","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

This study reports the automated radiosynthesis and evaluation of [18F]FPMBBG, a radiopharmaceutical designed to target the norepinephrine transporter (NET). A newly developed fully protected benzylguanidine precursor, which prevents interference from non-protected benzylguanidine part during the nucleophilic process, has enabled a one-pot two-step fully automated cassette-based synthesis of [18F]FPMBBG. This advancement enhances the feasibility of the synthesis, ensures reproducibility, and allows for the production of substantial quantities of the radiotracer, paving the way for future clinical applications. [18F]FPMBBG was prepared in radiochemical yield of ~ 23% (n = 6, decay-corrected) within 70 min, with a radiochemical purity exceeding 98%, and molar activity of > 2 GBq/μmol. In studies using miniature Bama pigs, [18F]FPMBBG showed favorable distribution, providing high-contrast cardiac images at an early stage. Moreover, desipramine inhibition studies confirmed the high NET specificity of [18F]FPMBBG. The efficient automated synthesis, robust heart uptake, and minimal background signal highlight [18F]FPMBBG as a promising PET tracer for assessing cardiac sympathetic neuronal function.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.30
自引率
0.00%
发文量
57
审稿时长
1 months
期刊介绍: The Journal of Labelled Compounds and Radiopharmaceuticals publishes all aspects of research dealing with labeled compound preparation and applications of these compounds. This includes tracer methods used in medical, pharmacological, biological, biochemical and chemical research in vitro and in vivo. The Journal of Labelled Compounds and Radiopharmaceuticals devotes particular attention to biomedical research, diagnostic and therapeutic applications of radiopharmaceuticals, covering all stages of development from basic metabolic research and technological development to preclinical and clinical studies based on physically and chemically well characterized molecular structures, coordination compounds and nano-particles.
期刊最新文献
Preparation of Macrobicyclic Cryptands for Radiometal Complexation Synthesis and Characterization of 3-Hydroxybupivacaine and Deuterated 3-Hydroxybupivacaine for Use in Equine Medication Regulation Automated Radiolabeling and Evaluation of [18F]FPMBBG: A Novel Cardiac Neuronal PET Imaging Agent Synthesis of 14C-Labeled Polyethylene Terephthalate and Generation of 14C-Nanoparticles for Fate and Disposition Studies Issue Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1