Improvement of efficiency and stability of perovskite solar cells using CTF-0 and combination with anthracene: A computational study

IF 4.1 3区 化学 Q2 CHEMISTRY, PHYSICAL Journal of Photochemistry and Photobiology A-chemistry Pub Date : 2025-02-12 DOI:10.1016/j.jphotochem.2025.116337
Vahdat Rafee , Eisa Rahimi , Hossein Tavallali , Rahmatollah Rajabi
{"title":"Improvement of efficiency and stability of perovskite solar cells using CTF-0 and combination with anthracene: A computational study","authors":"Vahdat Rafee ,&nbsp;Eisa Rahimi ,&nbsp;Hossein Tavallali ,&nbsp;Rahmatollah Rajabi","doi":"10.1016/j.jphotochem.2025.116337","DOIUrl":null,"url":null,"abstract":"<div><div>The present study investigates the effect of adding one, two, and three anthracene molecules into the CTF-0 molecule, acting as an organic hole-transport material, on the stability, efficiency, photovoltaic properties, and charge transfer in perovskite solar cells. To achieve this, the most suitable computational function was selected by performing Density Functional Theory (<em>DFT</em>) level calculations after studying the absorption spectrum of the <em>CTF</em>-<em>0</em> molecule and comparing it with experimental results. Features such as the energy bandgap, charge transitions, oscillator strength, absorption spectra, dipole moment, binding energy, density of states, light-harvesting efficiency, fill factor, open-circuit voltage, power conversion efficiency, and other related factors were evaluated upon adding the anthracene molecule to the reference molecule. The results indicated significant improvements in the photovoltaic properties of the cells with the new molecules. Notably, enhancements in the absorption spectra, binding energy values, and other optical properties were observed compared to the reference molecule. To validate these results, further analyses such as density of states and transition density matrix were conducted. The power conversion efficiency (PCE) results were reported as follows: for R 31.38 % in the gas phase and 29.57% in the presence of a solvent; ANT1, 28.88% in the gas phase and 27.07% in the presence of a solvent; for ANT2, 28.20% in the gas phase and 25.93% in the presence of a solvent; and for ANT3, 27.29% in the gas phase and 24.80% in the presence of a solvent. Ultimately, the results suggest that the newly derived molecules hold strong potential for optimizing perovskite solar cell performance.</div></div>","PeriodicalId":16782,"journal":{"name":"Journal of Photochemistry and Photobiology A-chemistry","volume":"465 ","pages":"Article 116337"},"PeriodicalIF":4.1000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Photochemistry and Photobiology A-chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1010603025000772","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The present study investigates the effect of adding one, two, and three anthracene molecules into the CTF-0 molecule, acting as an organic hole-transport material, on the stability, efficiency, photovoltaic properties, and charge transfer in perovskite solar cells. To achieve this, the most suitable computational function was selected by performing Density Functional Theory (DFT) level calculations after studying the absorption spectrum of the CTF-0 molecule and comparing it with experimental results. Features such as the energy bandgap, charge transitions, oscillator strength, absorption spectra, dipole moment, binding energy, density of states, light-harvesting efficiency, fill factor, open-circuit voltage, power conversion efficiency, and other related factors were evaluated upon adding the anthracene molecule to the reference molecule. The results indicated significant improvements in the photovoltaic properties of the cells with the new molecules. Notably, enhancements in the absorption spectra, binding energy values, and other optical properties were observed compared to the reference molecule. To validate these results, further analyses such as density of states and transition density matrix were conducted. The power conversion efficiency (PCE) results were reported as follows: for R 31.38 % in the gas phase and 29.57% in the presence of a solvent; ANT1, 28.88% in the gas phase and 27.07% in the presence of a solvent; for ANT2, 28.20% in the gas phase and 25.93% in the presence of a solvent; and for ANT3, 27.29% in the gas phase and 24.80% in the presence of a solvent. Ultimately, the results suggest that the newly derived molecules hold strong potential for optimizing perovskite solar cell performance.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.90
自引率
7.00%
发文量
580
审稿时长
48 days
期刊介绍: JPPA publishes the results of fundamental studies on all aspects of chemical phenomena induced by interactions between light and molecules/matter of all kinds. All systems capable of being described at the molecular or integrated multimolecular level are appropriate for the journal. This includes all molecular chemical species as well as biomolecular, supramolecular, polymer and other macromolecular systems, as well as solid state photochemistry. In addition, the journal publishes studies of semiconductor and other photoactive organic and inorganic materials, photocatalysis (organic, inorganic, supramolecular and superconductor). The scope includes condensed and gas phase photochemistry, as well as synchrotron radiation chemistry. A broad range of processes and techniques in photochemistry are covered such as light induced energy, electron and proton transfer; nonlinear photochemical behavior; mechanistic investigation of photochemical reactions and identification of the products of photochemical reactions; quantum yield determinations and measurements of rate constants for primary and secondary photochemical processes; steady-state and time-resolved emission, ultrafast spectroscopic methods, single molecule spectroscopy, time resolved X-ray diffraction, luminescence microscopy, and scattering spectroscopy applied to photochemistry. Papers in emerging and applied areas such as luminescent sensors, electroluminescence, solar energy conversion, atmospheric photochemistry, environmental remediation, and related photocatalytic chemistry are also welcome.
期刊最新文献
Carbazole-functionalized dibenzo[g,p]chrysene derivatives: Synthesis and luminescence properties Covalent organic polymers with reactive site side chains: Synthesis, fluorescence effects and solvent-based colour development Optimized PEG/eudragit-Zn4V2O9 nanostructures for effective catalytic and antibacterial activity with computational insights Poly (ionic liquid-co-acrylic acid)/oxidized carbon nitride (P/P/O) with enhanced photocatalytic and synergistic bacteriostasis performance Effect of halogenation on the photophysics of salicylideneimine-boron compound: An unusual behaviour with bromination
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1