A lightweight spatiotemporal classification framework for tree species with entropy-based change resistance filter using satellite imagery

Biao Zhang , Zhichao Wang , Boyi Liang , Liguo Dong , Zebang Feng , Mingyang He , Zhongke Feng
{"title":"A lightweight spatiotemporal classification framework for tree species with entropy-based change resistance filter using satellite imagery","authors":"Biao Zhang ,&nbsp;Zhichao Wang ,&nbsp;Boyi Liang ,&nbsp;Liguo Dong ,&nbsp;Zebang Feng ,&nbsp;Mingyang He ,&nbsp;Zhongke Feng","doi":"10.1016/j.jag.2025.104449","DOIUrl":null,"url":null,"abstract":"<div><div>The spatiotemporal characteristics of remote sensing data are often time-varying, leading to significant fluctuation and instability in tree species classification results across different years, especially in regions referred to as high-variance areas. To improve the stability and accuracy of the classification results, this study proposes a lightweight spatiotemporal classification framework, with the core algorithm being the Spatiotemporal Entropy-based Change Resistance Filter (STECR-F) algorithm. The STECR-F algorithm integrates the concept of Spatiotemporal Entropy (STE) and, by applying weighted spatiotemporal neighborhood information, suppresses uncertainty in the classification process. It effectively enhances the spatiotemporal consistency of the classification results, particularly in high-variance regions, and reduces classification instability caused by spatiotemporal fluctuations. This study comprehensively evaluates the performance of STECR-F from three dimensions: STE, transfer change, and classification accuracy, and compares it with other methods. The results show that STECR-F significantly reduces the STE value, with an average decrease of 0.3876, effectively mitigating the fluctuation of the classification results. In high-variance regions, the effect of STECR-F is particularly pronounced, with an average decrease in STE value of up to 0.6847. Moreover, STECR-F significantly suppresses random transitions between classes, reducing category transitions by an average of 22.47%, with the maximum reduction reaching 46%. In terms of classification accuracy, STECR-F achieved an overall accuracy of 91.35%, representing an improvement of 8.02% compared to the results without using STECR-F. Additionally, compared to the DMSPN method using only neighborhood information and pattern filtering, STECR-F’s performance improved by 5.86% and 6.42%, respectively. Overall, the STECR-F algorithm effectively addresses the interannual dynamics and uncertainty in tree species classification results. By integrating weighted spatiotemporal neighborhood information, it significantly enhances classification stability and reduces random variability, making it particularly suitable for areas with high spatiotemporal variability and classification uncertainty.</div></div>","PeriodicalId":73423,"journal":{"name":"International journal of applied earth observation and geoinformation : ITC journal","volume":"138 ","pages":"Article 104449"},"PeriodicalIF":7.6000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of applied earth observation and geoinformation : ITC journal","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1569843225000962","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"REMOTE SENSING","Score":null,"Total":0}
引用次数: 0

Abstract

The spatiotemporal characteristics of remote sensing data are often time-varying, leading to significant fluctuation and instability in tree species classification results across different years, especially in regions referred to as high-variance areas. To improve the stability and accuracy of the classification results, this study proposes a lightweight spatiotemporal classification framework, with the core algorithm being the Spatiotemporal Entropy-based Change Resistance Filter (STECR-F) algorithm. The STECR-F algorithm integrates the concept of Spatiotemporal Entropy (STE) and, by applying weighted spatiotemporal neighborhood information, suppresses uncertainty in the classification process. It effectively enhances the spatiotemporal consistency of the classification results, particularly in high-variance regions, and reduces classification instability caused by spatiotemporal fluctuations. This study comprehensively evaluates the performance of STECR-F from three dimensions: STE, transfer change, and classification accuracy, and compares it with other methods. The results show that STECR-F significantly reduces the STE value, with an average decrease of 0.3876, effectively mitigating the fluctuation of the classification results. In high-variance regions, the effect of STECR-F is particularly pronounced, with an average decrease in STE value of up to 0.6847. Moreover, STECR-F significantly suppresses random transitions between classes, reducing category transitions by an average of 22.47%, with the maximum reduction reaching 46%. In terms of classification accuracy, STECR-F achieved an overall accuracy of 91.35%, representing an improvement of 8.02% compared to the results without using STECR-F. Additionally, compared to the DMSPN method using only neighborhood information and pattern filtering, STECR-F’s performance improved by 5.86% and 6.42%, respectively. Overall, the STECR-F algorithm effectively addresses the interannual dynamics and uncertainty in tree species classification results. By integrating weighted spatiotemporal neighborhood information, it significantly enhances classification stability and reduces random variability, making it particularly suitable for areas with high spatiotemporal variability and classification uncertainty.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
International journal of applied earth observation and geoinformation : ITC journal
International journal of applied earth observation and geoinformation : ITC journal Global and Planetary Change, Management, Monitoring, Policy and Law, Earth-Surface Processes, Computers in Earth Sciences
CiteScore
12.00
自引率
0.00%
发文量
0
审稿时长
77 days
期刊介绍: The International Journal of Applied Earth Observation and Geoinformation publishes original papers that utilize earth observation data for natural resource and environmental inventory and management. These data primarily originate from remote sensing platforms, including satellites and aircraft, supplemented by surface and subsurface measurements. Addressing natural resources such as forests, agricultural land, soils, and water, as well as environmental concerns like biodiversity, land degradation, and hazards, the journal explores conceptual and data-driven approaches. It covers geoinformation themes like capturing, databasing, visualization, interpretation, data quality, and spatial uncertainty.
期刊最新文献
Editorial Board Near real-time land surface temperature reconstruction from FY-4A satellite using spatio-temporal attention network Assessing urban residents’ exposure to greenspace in daily travel from a dockless bike-sharing lens Satellite retrieval of bottom reflectance from high-spatial-resolution multispectral imagery in shallow coral reef waters Using street view imagery and localized crowdsourcing survey to model perceived safety of the visual built environment by gender
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1