Experimental evaluation of ammonia injection strategies for different solid fuel types in drop tube furnace for carbon-free energy transition in thermal power plants

IF 5.6 2区 工程技术 Q2 ENERGY & FUELS Journal of The Energy Institute Pub Date : 2025-02-26 DOI:10.1016/j.joei.2025.102060
Sang-Hwa Song , Ji-Hwan Lee , Hyeong-Bin Moon , Seung-Mo Kim , Gyeong-Min Kim , Chung-Hwan Jeon
{"title":"Experimental evaluation of ammonia injection strategies for different solid fuel types in drop tube furnace for carbon-free energy transition in thermal power plants","authors":"Sang-Hwa Song ,&nbsp;Ji-Hwan Lee ,&nbsp;Hyeong-Bin Moon ,&nbsp;Seung-Mo Kim ,&nbsp;Gyeong-Min Kim ,&nbsp;Chung-Hwan Jeon","doi":"10.1016/j.joei.2025.102060","DOIUrl":null,"url":null,"abstract":"<div><div>Ammonia, known for its high hydrogen content and favorable storage properties, is emerging as a key carbon-neutral fuel for the global energy transition. South Korea aims to demonstrate the application of ammonia in existing coal-fired power plant boilers by 2027, targeting a reduction in CO<sub>2</sub> emissions. However, research in this area is crucial because the combustibility and exhaust gas composition, which are vital for power plant operations, may change. This study investigates the impact of ammonia injection position and coal grade on combustibility and exhaust gas in coal-fired power plants using an ammonia drop tube furnace (ADTF). Experimental results indicate that ammonia injection position significantly influences combustibility and exhaust gas. Sub-bituminous coal (Coal B), with higher volatile matter content, exhibited enhanced combustibility and lower unburned carbon (UBC) emissions compared to bituminous coal (Coal A). NOx emissions were significantly reduced when ammonia was injected downstream because of its function as a reducing agent. Particularly for coal B, when injected at the lowest position, it exhibited a lower emission (91.74 ppm) compared to the complete combustion of the coal (123.82 ppm). The combustion trends of mixed coal resembled those of Coal A; however, it presented a viable approach for enhancing high-grade coal utilization and demonstrated superior emission characteristics in certain respects compared to single coal. These findings demonstrate the potential of ammonia-coal co-firing to reduce CO<sub>2</sub> and NOx emissions in coal combustion while improving boiler combustion efficiency. Such insights are expected to significantly contribute to the demonstration project of ammonia-coal co-firing power generation.</div></div>","PeriodicalId":17287,"journal":{"name":"Journal of The Energy Institute","volume":"120 ","pages":"Article 102060"},"PeriodicalIF":5.6000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Energy Institute","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1743967125000881","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Ammonia, known for its high hydrogen content and favorable storage properties, is emerging as a key carbon-neutral fuel for the global energy transition. South Korea aims to demonstrate the application of ammonia in existing coal-fired power plant boilers by 2027, targeting a reduction in CO2 emissions. However, research in this area is crucial because the combustibility and exhaust gas composition, which are vital for power plant operations, may change. This study investigates the impact of ammonia injection position and coal grade on combustibility and exhaust gas in coal-fired power plants using an ammonia drop tube furnace (ADTF). Experimental results indicate that ammonia injection position significantly influences combustibility and exhaust gas. Sub-bituminous coal (Coal B), with higher volatile matter content, exhibited enhanced combustibility and lower unburned carbon (UBC) emissions compared to bituminous coal (Coal A). NOx emissions were significantly reduced when ammonia was injected downstream because of its function as a reducing agent. Particularly for coal B, when injected at the lowest position, it exhibited a lower emission (91.74 ppm) compared to the complete combustion of the coal (123.82 ppm). The combustion trends of mixed coal resembled those of Coal A; however, it presented a viable approach for enhancing high-grade coal utilization and demonstrated superior emission characteristics in certain respects compared to single coal. These findings demonstrate the potential of ammonia-coal co-firing to reduce CO2 and NOx emissions in coal combustion while improving boiler combustion efficiency. Such insights are expected to significantly contribute to the demonstration project of ammonia-coal co-firing power generation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of The Energy Institute
Journal of The Energy Institute 工程技术-能源与燃料
CiteScore
10.60
自引率
5.30%
发文量
166
审稿时长
16 days
期刊介绍: The Journal of the Energy Institute provides peer reviewed coverage of original high quality research on energy, engineering and technology.The coverage is broad and the main areas of interest include: Combustion engineering and associated technologies; process heating; power generation; engines and propulsion; emissions and environmental pollution control; clean coal technologies; carbon abatement technologies Emissions and environmental pollution control; safety and hazards; Clean coal technologies; carbon abatement technologies, including carbon capture and storage, CCS; Petroleum engineering and fuel quality, including storage and transport Alternative energy sources; biomass utilisation and biomass conversion technologies; energy from waste, incineration and recycling Energy conversion, energy recovery and energy efficiency; space heating, fuel cells, heat pumps and cooling systems Energy storage The journal''s coverage reflects changes in energy technology that result from the transition to more efficient energy production and end use together with reduced carbon emission.
期刊最新文献
Multi-scale exploration of the effects of fuel structure and hydrogen-doped on soot formation Editorial Board Study on the correlation between coal property parameters and its pyrolysis heat absorption Effect of promoters and calcination temperature on the performance of nickel silica core-shell catalyst in biogas dry reforming Research progress of the synergistic removal of nitrogen oxides(NOx)and chlorinated volatile organic compounds(CVOCs)in industrial flue gas
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1